1. (5 points) We define an *Isaac tree* I_n recursively by:
- I_0 consists of a single node,
- the *Isaac tree* I_n, $n \geq 1$, consists of two Isaac trees I_{n-1} such that the root of one is the rightmost child of the root of the other.

The first four Isaac trees are:

A) How many nodes are in I_n?
B) What is the height of I_n?
C) Defining the *depth* of a node in a tree to be the number of edges on the simple path from the root to the node, how many nodes are at depth k of *Isaac tree* I_n, for $0 \leq k \leq n$? Justify your response. Examining the above figure shows that I_3 has 3 nodes at depths 1 and 2, and 0 nodes at depths 0 and 3.

2) (3 points) From Cormen, Leiserson & Rivest's *Algorithms*: Show that for any integers $n, j, k \geq 0, j+k \leq n$, \[
\binom{n}{j+k} \leq \binom{n}{j} \binom{n-j}{k}.
\] Give values for n, j and k such that equality does not hold.

3) (5 points) Give a closed form (which may involve binomial coefficients, but should not involve Σ) for \[
\sum_{0 \leq j \leq n} \binom{j}{k}.
\] Note that for $n=4$ and $k=2$, the value is 35.

(*Hint*: It is helpful to manipulate things so that you can get rid of the j multiplier, although this may create more than one sum.)
C.S.504
Solution for H.W. #3

1) A) By induction, we show that \(I_n \) has \(2^n \) nodes. Clearly \(I_0 \) has \(2^0=1 \) node.
 Assuming that \(I_{n-1} \) has \(2^{n-1} \) nodes, we see that \(I_n \) has \(2^{n-1}+2^{n-1}=2^n \) nodes.
 B) Since the height of \(I_0 \) is 0 and the height of \(I_n \) is one greater than the
 height of \(I_{n-1} \), then the height of \(I_n \) is \(n \).
 C) Letting \(d(n,k) \) denote the number of nodes at depth \(k \) of \(I_n \), we prove by
 induction (on \(k \)) that \(d(n,k) = \binom{n}{k} \) by noting that \(d(n,0) = 1 = \binom{n}{0} \) for \(n \geq 0 \). Since
 the nodes at depth \(k \) are the nodes at depth \(k \) in one of the trees \(I_{n-1} \) plus the
 nodes at depth \(k-1 \) in one of the trees \(I_{n-1} \), we see that
 \[
 d(n,k) = d(n-1,k) + d(n-1,k-1) = \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}.
 \]

2) \[
\binom{n}{j} \binom{n-j}{k} = \frac{n!}{j!(n-j)!} \frac{(n-j)!}{k!(n-j-k)!} = \frac{n!}{(n-J+k)!(n-J-k)!} = \frac{n!}{(n-J+k)!(n-J-k)!} \cdot \binom{n-J+k}{j}
\]
 which is greater than or equal to \(\binom{n}{j+k} \) since \(k \geq 0 \) implies
 \[
 \binom{j+k}{j} \geq 1.
 \]
 Equality holds when \(k=0 \) or \(j=0 \). Choosing \(n=2, j=k=1 \) we have an
 inequality since \(\frac{2}{2} = 1 \leq \frac{2}{1} \cdot \frac{1}{1} = 2 \)

3) \[
\sum_{0 \leq j \leq n} \frac{j}{k} = \sum_{0 \leq j \leq n} \frac{j}{k+1} = \sum_{0 \leq j \leq n} \left(\frac{j+1}{k+1} - \frac{j}{k+1} \right) = \sum_{0 \leq j \leq n} \left(\frac{j+1}{k+1} \right) - \sum_{0 \leq j \leq n} \left(\frac{j}{k+1} \right) = (k+1) \sum_{0 \leq j \leq n} \left(\frac{j}{k+1} \right) - (n+1) \sum_{0 \leq j \leq n} \left(\frac{j+1}{k+1} \right) = (k+1) \sum_{0 \leq j \leq n} \left(\frac{j}{k+1} \right) - (n+1) \sum_{0 \leq j \leq n+1} \left(\frac{j}{k+1} \right) = (k+1) \sum_{0 \leq j \leq n+1} \left(\frac{j}{k+1} \right) - (n+1) \sum_{0 \leq j \leq n+1} \left(\frac{j+1}{k+1} \right) = (k+1) \sum_{0 \leq j \leq n+1} \left(\frac{j}{k+1} \right) - (n+1) \sum_{0 \leq j \leq n+1} \left(\frac{j+1}{k+1} \right)
\]