1. (3 points) Use the method of characteristic roots to solve the recurrence:
\[t_n = t_{n-2} + 4n, \quad n \geq 2 \]
\[t_0 = 1, \quad t_1 = 4 \]

2. (3 points) Use the method of characteristic roots to solve the recurrence:
\[t_n = 2t_{n-1} + (n + 5)3^n, \quad n \geq 1 \]
\[t_0 = 0 \]

3. (5 points) (From Cormen, Leiserson & Rivest) An array \(A[1..n] \) contains all the integers from 0 to \(n \) except one. The elements of \(A \) are represented in binary, and the only operation we can use to access them is of the form "fetch the \(j \)th bit of \(A[i] \)", which takes constant time. Assume each entry of \(A \) is expressed as a sequence \(b_{\lfloor \lg(n+1) \rfloor}, \ldots, b_1 \) of bits. Show that there exists a \(k \) such that the missing integer can be found using only \(kn \) bit fetches.
Note that storing \(A[1..n] \) requires \(n\lfloor \lg(n+1) \rfloor \) bits, so the solution can not involve fetching every bit of \(A \).
1. The characteristic equation is \((x^2 - 1)(x - 1)^2 = (x - 1)^3(x + 1) = 0\)

The solution is of the form

\[t_n = a_1n + b_1n + g_1n^2 + d(-1)^n = a + b + g + d(-1)^n \]

Plugging in to initial conditions yields

\[t_0 = 1 = a + d \]
\[t_1 = 4 = a + b + g - d \]
\[t_2 = 9 = a + 2b + 4g + d \]
\[t_3 = 16 = a + 3b + 9g - d \]

Solving this system of equations yields \(a = 1, b = 2, g = 1, d = 0\)

Therefore, \(t_n = 1 + 2n + n^2 = (n + 1)^2\)

2. The characteristic equation is \((x - 2)(x - 3)^2 = 0\)

The solution is of the form \(t_n = a_3\ n + b_3\ n + g_2^2\ n + d\)

Plugging in to initial conditions yields

\[t_0 = 0 = a + g \]
\[t_1 = 18 = 3a + 3b + 2g \]
\[t_2 = 99 = 9a + 18b + 4g \]

Solving this system of equations yields \(a = 9, b = 3, g = -9\)

Therefore, \(t_n = 9\cdot 3^n + 3n\cdot 3^n - 9\cdot 2^n = (n + 3)\cdot 3^n + 1 - 9\cdot 2^n\)
3. Let m be the missing integer. We let $S \subseteq \{0, \ldots, n\}$ be a set of candidates for m, and $A^* \subseteq \{1, \ldots, n\}$ be a set of subscripts of A such that if $x \in S \backslash \{m\}$, then there is an $i \in A^*$ such that $A[i] = x$.

Initially, $S = \{0, \ldots, n\}$ and $A^* = \{1, \ldots, n\}$. As elements are removed from S, the corresponding subscripts are removed from A^*.

\[S := \{0, \ldots, n\} \]
\[A^* := \{1, \ldots, n\} \]

\textbf{for} $i := 1 \text{ to } \lceil \lg n \rceil \textbf{ do}\]
\textbf{let} p \textbf{be the number of 1's in the} $i^{\text{th}} \text{ bit position of the elements of } S$
\textbf{sum} := 0

\textbf{for each } $i \in A^*$ \textbf{ do}

\textbf{if} the $j^{\text{th}} \text{ bit of } A[i] = 1 \textbf{ then } \textbf{sum} := \textbf{sum} + 1$

\textbf{if } $p = \textbf{sum} \textbf{ then remove from } S \text{ every element with a 1 in the}$
\textbf{if } $p = \textbf{sum} \textbf{ then remove from } S \text{ every element with a 1 in the}$
\textbf{else remove from } $S \text{ every element with a 0 in the}$
\textbf{else remove from } $S \text{ every element with a 0 in the}$
\textbf{th} bit, along with the corresponding indices
from A^*
from A^*

the element remaining in S is m

The first pass examines n bits of A.
The second pass examines $n/2$ bits of A.
The i^{th} pass examines $n/(2^{i-1})$ bits of A.
The number of bits examined is

\[\sum_{1 \leq i \leq \lceil \lg n \rceil} \frac{n}{(2^{i-1})} = n \sum_{1 \leq i \leq \lceil \lg n \rceil} \frac{1}{(2^{i-1})} \]

\[= n \sum_{1 \leq i \leq \lceil \lg n \rceil} \frac{1}{(2^{i})} \]

\[= n \sum_{0 \leq i \leq \lceil \lg n \rceil} \frac{1}{(2^{i})} \]

\[= n \frac{1-(1/2)^{\lceil \lg n \rceil}}{1-(1/2)} \]

\[= 2n \frac{1-(1/n)}{1-(1/2)} \]

\[= 2n - 2 \]