Due: April 22/23, 1998

1. (12 points) Consider the following program fragment operating on array $A[n]$:

   ```
   max = -\infty;
   for (i=0; i<n; i++)
     if (A[i] > max) max = A[i];
   ```

Assume that A contains a permutation of $\{1, \ldots, n\}$ drawn from a uniform distribution over the set of all such permutations. Give a closed form for each of the following answers.

 (A) What is the expected number of times $\max = A[i]$ is executed?
 (B) What is the variance of the number of times $\max = A[i]$ is executed? You may use the definition of equation (6.61) on page 277 of our text.
 (C) What is the standard deviation of the number of times $\max = A[i]$ is executed?
 (D) What is the probability that $\max = A[i]$ is executed n times?
 (E) For $n=10$, what is the probability that $\max = A[i]$ is executed 10 times?
 (F) For $n=10$, use Chebyshev’s inequality to bound the probability that $\max = A[i]$ is executed n times?

2. (3 points) We know that if f is a function from real numbers to real numbers and X is a random variable, then $f(X)$ is a random variable. Prove or give a counterexample to the following.

 Conjecture: For any functions f and g and any independent random variables X and Y, random variables $f(X)$ and $g(Y)$ must be independent.

3. (8 points) Knuth describes the following rather silly algorithm to sort a list A of n distinct numbers:

   ```
   procedure pokeysort(n : integer)
     begin if $n > 1$ then repeat
       $k \leftarrow$ random element of $\{1, \ldots, n\}$
       swap $A[k]$ $\leftrightarrow$ $A[n]$
       pokeysort(n-1)
     until $A[n-1]$ $\leq$ $A[n]$
   end
   ```

For $n \geq 2$, define random variable X_i to be the number of recursive invocations of $pokeysort$, not counting the initial invocation. $X_1 = 0$. For $n=2$ and $A[1]=5$ and $A[2]=8$, if each invocation of $pokeysort(2)$ sets k to 1, then $X_2 = 2$. For the same input, if the invocation of $pokeysort(2)$ sets k to 2, then $X_2 = 1$.

 (A) What is $E[X_2]$?
 (B) Define a recurrence for $E[X_n]$ in terms of $E[X_{n-1}]$ for $n \geq 3$.
 (C) What is $E[X_n]$?