Contents

1 Introduction
 1.1 Why do we Analyze Algorithms?
 1.1.1 Cost of Algorithms
 1.1.2 One problem – Several solutions
 1.1.3 Matrix Multiplication
 1.2 Proofs
 1.2.1 Proof by Counting
 1.3 Induction
 1.3.1 Proof by induction

2 Combinatorial Preliminaries
 2.1 Fundamental Principle of Counting
 2.2 Permutations and Combinations
 2.3 Properties of Summation
 2.3.1 Index Transformations
 2.4 Multiple Sums
 2.4.1 Changing Order of Summation
 2.4.2 Summation and Integration: Summation by Parts
 2.5 Binomial Coefficients
 2.5.1 Definitions and Properties
2.5.2 Transformations and Sums
2.5.3 Stirling’s Approximation

3 Mathematical Preliminaries: Probability
3.1 Set Operations
3.2 Sample Space and Random Variables
3.3 Calculating Probabilities
3.4 Probability Mass Function
3.5 Expected Values
3.6 Bernoulli Variables and the Binomial Distribution
3.7 Poisson Distribution
3.8 Geometric and Hypergeometric Probabilities

4 More about Probability
4.1 Conditional Probabilities
4.2 Independence
4.3 The Theorem of Total Probability
4.4 Bayes Theorem
4.5 Convolution
4.6 Variance and Standard Deviation
4.7 Chebyshev Inequality
4.8 Sundry Examples

Review Questions to the Lecture 4

5 Recurrences or Difference Equations
5.1 How do Difference Equations Arise?
5.2 First Order Linear Difference Equations
5.3 Recurrences with “Integer Functions”
 5.3.1 Divide-and-Conquer Recurrences
5.3.2 Binary Search Recurrence
5.3.3 Merge-Sort Recurrence
5.4 Quick-sort Recurrence
5.5 Special Topics
 5.5.1 The Annihilator method for difference equations with constant coefficients
 5.5.2 Recurrence for the binomial coefficients

6 Introduction to Generating Functions
 6.1 Complex Numbers
 6.2 Review of Power Series
 6.2.1 Taylor series and their convergence
 6.2.2 Operations on power series
 6.2.3 Multisection of series
 6.3 Functions of Complex Variable: Basic Concepts
 6.4 Differential Operators
 6.5 Generating Functions — Definitions
 6.5.1 Ordinary Generating Functions
 6.5.2 Exponential Generating Functions

7 First Applications of Generating Functions
 7.1 Extraction of Coefficients
 7.2 Counting Binary Trees
 7.3 Solving Recurrences
 7.4 Snake-Oil Summation
 7.5 Applications to Probability
 7.5.1 Definition of generating functions used in probability
 7.5.2 Examples

8 Enumeration with Generating Functions
8.1 Definition of enumerators
8.2 Sum and Product Rules
 8.2.1 The sum rule
 8.2.2 The product rule
8.3 Counting Compositions of Integers
 8.3.1 Homogeneous Compositions
 8.3.2 Inhomogeneous Compositions
8.4 Partitions of Integers

9 Elementary Enumeration Methods
9.1 The Principle of Inclusion and Exclusion (PIE)
9.2 Some PIE Applications
 9.2.1 Combinatorial Examples
 9.2.2 Probabilistic Inclusion – Exclusion Principle
9.3 Occupancy Enumeration

10 Combinatorics of Strings
10.1 Operations on Languages
10.2 Derived Languages
 10.2.1 Substitution
 10.2.2 Shuffle Product
10.3 Regular Languages
 10.3.1 Definitions
 10.3.2 Finite State Automata
 10.3.3 Finite State Automata and Regular Languages
10.4 Counting Regular Languages
 10.4.1 Word equations
 10.4.2 Counting Regular Languages
10.4.3 Admissibility considerations

11 Introduction to Asymptotics
 11.1 Asymptotic Notation
 11.2 Summation Asymptotics
 11.3 The Euler-Maclaurin Formula

12 Asymptotics and Generating Functions
 12.1 Elementary Bounds from Generating Functions
 12.2 Estimates from Singularities
 12.2.1 Poles
 12.2.2 Algebraic Singularities
 12.2.3 Darboux Theorem and its Relation to the Binomial Theorem
 12.3 Estimates from Entire Functions
 12.3.1 The Laplace method
 12.3.2 The Saddle Point method

13 Tree Enumeration