CS 502

Introduction to Operating Systems

Spring 99
WPI MetroWest/Southboro Campus

Operating Systems Introduction Outline

• Course Introduction
 – Administration
 – Major components
 • Homework
 • Research Paper Presentation
 • Exams
 • Project
 – Syllabus
• Operating Systems Background
 – Context of Operating Systems
 – Definitions of an Operating System
 – Historical Perspective
• Computer Organization and Operating Systems
Administration

- **Professor Thomas Bressoud**
 - Stratus Computer (Ascend)
 - (508) 490-6329
 - Tom_Bressoud@stratus.com

- **Office Hours**
 - Before class
 - By appointment
 - 24 hour email response

- **Class Email List** -- cs502w@cs.wpi.edu

- **Web ReCourse**
 - http://penguin.wpi.edu:4545

- **Textbook**

Course Components

- **Homework**
 - Two in the first half of the semester. 10% of grade.

- **Research Paper Presentation**
 - Select a current research paper in the operating systems field and read and understand it and present a short presentation summarizing the work and detailing some aspect of the work.

- **Exams**
 - A midterm on Oct. 27 and a final on Dec. 15. They count 20% and 30% of your grade respectively. Closed book. One handwritten note sheet permitted.

- **The Project**
 - Totals 25% of your grade. See next transparency.

- **Class Participation**
 - 5% of your grade
The CS 502 Project

• By the end of the semester you will write an operating system for the Z502 computer architecture. The Z502 is a hypothetical processor that is defined for you.
• You will be given a simulator for the Z502 and a suite of user programs to test your Operating System implementation.
• This is a large project, involving upwards of a couple thousand lines of code. You must start early to succeed.
• To encourage students to begin early, I will divide Phase 1 into a set of milestones that get turned in for “checkmark” credit. The first two of these milestones are due next week.

CS 502 Project (cont.)

• What did you like about this course/lab?
 – “The project was interesting and challenging. It is a good way to learn the inner workings of an operating system”
 – “The project was extremely well thought-out”
 – “Everything was pretty good, but the project was a lot of fun to work on”
• What did you dislike about this course/lab?
 – “Sometimes too much work to do”
 – “It took a lot of time to do the lab”
 – “Project very time consuming”
• What strategy would you advise a friend?
 – “Start working on project phases as early as possible”
 – “Start the project early!”
 – “Hire a full time maid to keep the house going …”
Overall Cautions

• Substantial time commitment
 – This is a major project class; students that try to take another class simply run out of time.
 – This burden is lessened if you start early.
• Substantial programming required in C (C++ possible)
 – This is not the time to learn C.
 – Students who have not built modular structures in C (i.e. have mostly built < 100 line programs) can get lost in the effort to program in the large.
• This is an introduction to operating systems
 – Considerable overlap with undergraduate OS courses
 – If you are had a CS undergraduate major and/or have taken a course on OS, then the implementation project may be the primary value-add for taking this course. See me.

For Next Week (January 26):

• Milestone 1: Build the Z502 simulator
 – Download the C source for the Z502 into your development environment and build it. For instructions, see the Student Manual
 • http://www.cs.wpi.edu/~cs502/s99/project/student.html
 – Deliverables:
 • Makefile or equivalent
 • Log of execution run with and without “sample” argument
For February 2:

- **Milestone 2: Build a queue abstract data type (ADT).**
 - The assignment is as described for “Phase 0” in the project documentation. This is a very straightforward programming task. Focus on unit testing and clean modular design.
 - **URLS:**
 - http://www.cs.wpi.edu/~cs502/s99/project/phase0.html

What is an Operating System?

- Class provided definitions …
Where does the OS fit in?

- Basic Taxonomy

\[
\begin{align*}
\text{HW} & \quad \text{SW} \\
\text{Applications} & \quad \text{System} \\
\text{OS} & \quad \text{Non-OS}
\end{align*}
\]

- Hardware and Software combined to provide a tool to solve specific problems
- Software is differentiated according to its purpose
- System software provides a general environment where programmers/developers can create applications and users can run applications
- To an end user, the operating system is overhead. What matters is the application.

Operating System Context

- The Operating System is the layer between the hardware and the application.
- It implements some desired functionality by building on the functionality in lower levels.
- Software in general transforms one interface into another interface.
- What are the interfaces in this picture?
What does an Operating System Do?

- Objectives of an OS
 - Convenience
 - An operating system makes a computer more convenient to use.
 - Efficiency
 - An operating system allows the computer system resources to be used in an efficient manner.
 - Ability to Evolve
 - Should permit effective development, testing, and introduction of new system features and functions without interfering with service.

- Perspective-based OS Definition:
 - The OS is a manager of the computer system resources
 - The OS implements/manages virtual computers
Hardware Resources

- Processor
 - Component capable of executing instructions
- Memory
 - Contains all instructions and data used by a processor
 - Sometimes referred to as physical or primary memory
- Disk Devices
 - Long term storage of data
- I/O Controllers
 - Processors that are able to transfer data between memory and devices
 - Video, Terminal, Network, Mouse, Tape Drives, etc.

The Functions of Resource Management

- Transformation
 - Hardware resources have complex interfaces
 - Operating system transforms physical resources into virtual resources that provide similar functionality to their physical counterpart, but have a simpler interface.
- Multiplexing
 - Provide the sharing of physical resources among multiple users
 - Time division multiplexing
 - Exclusive use at different points in time
 - Appropriate when the resource cannot be divided into smaller versions of itself.
 - Space division multiplexing
 - A resource is divided into smaller versions of itself and each app/user is given its own part of the resource.
Resource Management (Cont.)

• Scheduling
 – Deciding which users should be allocated what resources and when they should get it.
 – Includes allocation and security/protection.

The OS as implementer of Virtual Computers

– The operating system creates software copies of the processor (the capability to execute instructions) and the memory (the capability to store information). Each constitutes a Virtual Computer (VC).
– Also transforms the devices into more abstract and easily used devices. In this way, it is building an extended machine.
The Virtual Computer

• The Virtual Processor
 – Nearly the same interface to the user as the physical processor (i.e. nearly the same instructions) for efficiency.
 – Removes some of the physical processor instructions and adds some other “instructions” (operations).
 • Instructions are removed by making them privileged
 • Added operations are system calls. These allow the virtual processor to request virtual resources from the operating system:
 – Create new virtual computers
 – Communicate with other virtual computers
 – Allocate storage as needed
 – Perform I/O
 – Access persistent storage through file system model
 – Shares the physical processor through time multiplexing

The Virtual Computer (Cont.)

• Virtual Primary Memory
 – Create the illusion of memory similar to hardware memory.
 – Start at 0 and addressable in bytes, load and store in words.
 – Shared via a combination of time multiplex and space multiplex of physical memory and space multiplex of secondary storage.

• Virtual Persistent Storage
 – File System
 – Shared via space multiplex

• Virtual I/O controllers and communications devices
 – Generally time multiplex most other devices.