CS 502

Spring 99
WPI MetroWest/Southboro Campus

Architecture of the Simulator Environment
Z502 Hardware Organization and Architecture
Generic Operating System Structure

The Test Suite

Phase 1 Tests
Phase 2 Tests

0S 502 Test Suite (test.c) AII' elementsinsidethg heavy box arein
asingle process, running a single thread
of execution.

testO | testla | testlb | testlx | test2a | test2b

All'1/O devices of the Z502 are simulated
0S502 Operating System entities. Thisincludesthetimer device

(base.c, scheduler_printer.c) and the disk devices.

Try to treat the 2502 Har dwar e Simulator
7502 Hardwar e Simulator as a “black box” and use the Z502 architecture
(z502.c) specification instead.

Native Operating System
(Windows NT, HP-UX, Solaris, etc.)

Native Hardwar e Platform
(IA-32, PA-RISC, Sun Workstation, etc.)

Dual-Mode architecture

User mode (see A.4)

High level language, augmented with
Z502 General Purpose Registers
Macros for simplifying reentrant programs
Systems Calls, provided as macros ijdorewrite!)

Z502 “Programs” are written as C functions taking a void parameter and
having a void return.

Example Program: void test0o(void)
{
SELECT_STEP

STEP(0)
printf(“This is test 0);
GET_TIME_OF_DAY(&Z502_REG_1);
STEP(1)
printf(“Time of day is %d\n", Z502_REG_1);
TERMINATE_PROCESS(-1, &2502_REG_9);
STEP(2)
printf(“Error: Test should be terminated, but isn't\n”);
break;

User Mode (cont.)

Address space for user programs is divided into

C code “program” memory for instructions and for local variables. This, for all
intents and purposes, is not constrained in size.

User “data” memory, referenced through a virtual address space, and called
MEMORY, and accessed from user space through the MEM_XXXX macros. No
programs in phase 1 access this user memory.

Kernel Mode

Instruction set includes C language instructions, plus

access to all the Z502 registers

access to 2502 physical memory (MEMORY)

access to the privileged instructions of the Z502 instruction set
1/O primitives
memory primitives
context switching primitives

These are all available through provided macros

5
I 0 N A 111 LI
Name Bits Usage
Z502_REG_ARGL1 ... 32 For passing system call parameter values
Z502_REG_ARG6
Z502_REG_1 ... 32 General purpose
Z502_REG_9
Z502_REG_PROGRAM_COUNTER 32 Points to next location in user program
Z502_REG_PAGE_TABLE_ADDR 32 Points to page table
Z502_REG_PAGE_TABLE_LENGTH| 32 Length of page table in 32 bit entries
Z502_REG_CURRENT_CONTEXT 32 Handle for current context
Z502_REG_INTERRUPT_MASK 32 Interrupt enable/disable
TO_VECTOR 3 x 32| Addresses of interruption handlers
STAT_VECTOR 2 x N | Exception statuses
X 32

Interruption Sources
Interrupts
TIMER_INTERRUPT from the delay timer
DISK_INTERRUPT from disk 1, 2, ...
Faults
INVALID_MEMORY fault
CPU_ERROR fault
PRIVILEGED_INSTRUCTION fault
Traps
SOFTWARE_TRAP for each system call

TO_VECTOR contains an address for each category of
interruption source.

In os_init (the OS boot code), the OS sets values for each
of the entries in TO_VECTOR.

On the 7502, there is a total enumeration of all
interruptions (exceptions)

SOFTWARE_TRAP

CPU_ERROR

INVALID_MEMORY

PRIVILEGED_INSTRUCTION

TIMER_INTERRUPT

DISK_INTERRUPT

DISK_INTERRUPT + 1

LARGEST_STAT_VECTOR_INDEX

Let theinterruption number (calledexception in
Appendix A) bex.
User registers are saved in Z308ardware Context
Hardware sets
STAT_VECTOR[SV_ACTIVE]K] = TRUE
STAT_VECTOR[SV_VALUE]K] = interruption specific info
Execution mode is set t@rnel
Hardware begins execution at Interrupt, Fault, or Trap
entry point as defined by TO_VECTOR
Note that INTERRUPT_MASK is not set to TRUE. The
operating system must do this if that is the desired mode of

operation.
9

On Entry
Mask interrupts (if desired)

Clear the Interruption Source
set STAT_VECTOR[SV_ACTIVE][x] to FALSE
Determine the cause of the interruption and process accordingly

On Exit
Unmask interrupts (if not already done).

For Interruptssimplyreturn

For trapsand faults ultimately exit the OS by performing a context
switch (even if that switches back to the original process). This
operation restores the user registers from the Zzdaware

Context and sets the execution mode backder.

10

Use STAT_VECTOR[SV_VALUE][x] to determine an
interruption cause and influence processing:

For SOFTWARE_TRAP, value is the system call number. Use
this to enter a switch statement to process system calls.

For CPU_ERROR, value is given by error codes (see table in
Appendix A)

For INVALID_MEMORY, value is virtual memory page causing
the fault

For PRIVILEGED_INSTRUCTION, value is O

For all interrupts (timer and disk), value is given by error codes
(where one of the possibilities is ERR_SUCCESS)

11

Thecontext is the state of the executing CPU, essentially
its registers.

The Hardware context is essentially a register set, plus an
entry address.

The OS only deals with the handle to a context. Typically

this is stored in the process control block.

Z502 Operations for manipulating contexts
Z502_MAKE_CONTEXT(handle, start address, kernel flag)
Z502_DESTROY_CONTEXT(handle)
Z502_SWITCH_CONTEXT((save/destroy flag, handle)

12

(T 0 e
Organize into functional areas
What are the functional areas of the Operating System?
What are the abstract data types required?
Class participation, putting together an OS structure...

Next steps (Milestone 3)
Strawman functional spec for each module defined in the block
diagram.
For each module
set of interrelations with other OS modules
portions of the Z502 interface being invoked by the module
Set of system calls realized within the module
For system calls
Categorization by module

Attributes: blocking vs. non-blocking, save/destroy context 5

Code given previously. Nearly the simplest user program
possible.

Requirements
Core OS
0s_init
TO_VECTOR

trap_handler
System call switch

Process Management module
0s_create
0s_terminate

Timer module
0s_get_time

14

(RN 1 O RO
Testla: Add SLEEP, requires timer multiplexing and
interrupt handling, infrastructure for multiple processes.
Testlb: Interface tests to CREATE_PROCESS

Testlc: Multiple instances of testla; demonstration of
FCFES scheduling (by using same priorities)

Testld: Likewise for different priorities
Testle: Suspend/Resume interface test
Testlf: Suspend/Resume on real scheduling
Testlg: Change Priority interface test
Testlh: Change Priority on real scheduling
Testlk: Misc. error tests

15

