 FILE SYSTEMS INTERFACE

FILE CONCEPT

· A collection of related bytes having meaning only to the creator. The file can be "free formed", indexed, structured, etc.

· The file is an entry in a directory.

· The file may have attributes (name, creator, date, type, permissions)

· The file may have structure (O.S. may or may not know about this.) It's a tradeoff of power versus overhead. For example,

a) An Operating System understands program image format in order to create a process.

b) The UNIX shell understands what how directory files look. (In general the UNIX kernel doesn't interpret files.)

c) Usually the Operating System understands and interprets file types.

· Memory-mapped files are a special case.

a) The Operating System "maps" or "connects" the data in the file with a region of memory in a process.

b) When the file is closed, memory information is written back to the file.

c) This is a great way to implement shared memory - have several processes open a memory-mapped file - they then each see the same information.

· Blocking occurs when some entity, (either the user or the Operating System) must pack bytes into a physical block.

a) Block size is fixed for disks, variable for tape

b) Size determines maximum internal fragmentation

c) We can allow reference to a file as a set of logical records (addressable units) and then
divide (or pack) logical records into physical blocks.
Example of File Structures

ACCESS METHODS

· If files had only one "chunk" of data, life would be simple. But for large files, the files themselves may contain structure, making access faster.

· As discussed in the last chapter, the file system may impose a structure on the way the file is allocated.

 SEQUENTIAL ACCESS

· Implemented by the filesystem.

· Data is accessed one record right after the last.

· Reads cause a pointer to be moved ahead by one.

· Writes allocate space for the record and move the pointer to the new End Of File.

· Such a method is reasonable for tape

 DIRECT ACCESS

· Method useful for disks.

· The file is viewed as a numbered sequence of blocks or records.

· There are no restrictions on which blocks are read/written in any order.

· User now says "read n" rather than "read next".

· "n" is a number relative to the beginning of file, not relative to an absolute physical disk location.

 OTHER ACCESS METHODS

· Built on top of direct access and often implemented by a user utility.

Indexed
ID plus pointer.

An index block says what's in each remaining block or contains pointers to blocks containing particular items. Suppose a file contains many blocks of data arranged by name alphabetically.

· Example 1: Index contains the name appearing as the first record in each block. There are as many index entries as there are blocks. <<< FIGURE 10.5>>>
· Example 2: Index contains the block number where "A" begins, where "B" begins, etc. Here there are only 26 index entries.
DIRECTORY STRUCTURE
· Directories maintain information about files:

· For a large number of files, may want a directory structure - directories under directories.

· Information maintained in a directory:

Name

The user visible name.

Type

The file is a directory, a program image, a user file, a link, etc.

Location
Device and location on the device where the file header is located.

Size

Number of bytes/words/blocks in the file.

Position
Current next-read/next-write pointers.

Protection
Access control on read/write/ execute/delete.

· Usage info Open count, time of creation/access, etc.

 Mounting
a filesystem occurs when the root of one filesystem is "grafted" into the existing tree of another filesystem.

· There is a need to PROTECT files and directories.

Actions that might be protected include: read, write, execute, append, delete, list

10: FILE SYSTEMS INTERFACE:

Rev. 4.0

_994707543.unknown

