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 FILE SYSTEMS INTERFACE

FILE CONCEPT

• A collection of related bytes having meaning only to the creator. The file can be
"free formed", indexed, structured, etc.

• The file is an entry in a directory.

• The file may have attributes (name, creator, date, type, permissions)

• The file may have structure ( O.S. may or may not know about this.) It’s a
tradeoff of power versus overhead. For example,

a) An Operating System understands program image format in order to create
a process.

b) The UNIX shell understands what how directory files look. (In general the
UNIX kernel doesn’t interpret files.)

c) Usually the Operating System understands and interprets file types.

• Memory-mapped files are a special case.
a) The Operating System "maps" or "connects" the data in the file with a

region of memory in a process.
b) When the file is closed, memory information is written back to the file.
c) This is a great way to implement shared memory - have several processes

open a memory-mapped file - they then each see the same information.

• Blocking occurs when some entity, (either the user or the Operating System)
must pack bytes into a physical block.

a) Block size is fixed for disks, variable for tape

b) Size determines maximum internal fragmentation

c) We can allow reference to a file as a set of logical records (addressable
units) and then divide ( or pack ) logical records into physical blocks.
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Example of File Structures
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ACCESS METHODS

• If files had only one "chunk" of data, life would be simple. But for large files,
the files themselves may contain structure, making access faster.

• As discussed in the last chapter, the file system may impose a structure on
the way the file is allocated.

 SEQUENTIAL ACCESS

• Implemented by the filesystem.

• Data is accessed one record right after the last.

• Reads cause a pointer to be moved ahead by one.

• Writes allocate space for the record and move the pointer to the new End Of
File.

• Such a method is reasonable for tape

 DIRECT ACCESS

• Method useful for disks.

• The file is viewed as a numbered sequence of blocks or records.

• There are no restrictions on which blocks are read/written in any order.

• User now says "read n" rather than "read next".

• "n" is a number relative to the beginning of file, not relative to an absolute
physical disk location.
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 OTHER ACCESS METHODS

• Built on top of direct access and often implemented by a user utility.

Indexed  ID plus pointer.

An index block says what’s in each remaining block or
contains pointers to blocks containing particular items.
Suppose a file contains many blocks of data arranged by
name alphabetically.

• Example 1: Index contains the name appearing as the first record in each
block. There are as many index entries as there are blocks.
<<< FIGURE  10.5>>>

• Example 2: Index contains the block number where "A" begins, where "B"
begins, etc. Here there are only 26 index entries.

DIRECTORY STRUCTURE

• Directories maintain information about files:

• For a large number of files, may want a directory structure - directories under
directories.

• Information maintained in a directory:

 Name The user visible name.

 Type  The file is a directory, a program image, a user file, a link, etc.

 Location Device and location on the device where the file header is located.

 Size Number of bytes/words/blocks in the file.

 Position Current next-read/next-write pointers.

 Protection Access control on read/write/ execute/delete.

• Usage info Open count, time of creation/access, etc.

    Mounting a filesystem occurs when the root of one filesystem is "grafted"
into the existing tree of another filesystem.

• There is a need to PROTECT files and directories.
Actions that might be protected include:   read,  write,  execute,  append,
delete,  list


