
10: FILE SYSTEMS INTERFACE: 1 Rev. 4.0

 FILE SYSTEMS INTERFACE

FILE CONCEPT

• A collection of related bytes having meaning only to the creator. The file can be
"free formed", indexed, structured, etc.

• The file is an entry in a directory.

• The file may have attributes (name, creator, date, type, permissions)

• The file may have structure (O.S. may or may not know about this.) It’s a
tradeoff of power versus overhead. For example,

a) An Operating System understands program image format in order to create
a process.

b) The UNIX shell understands what how directory files look. (In general the
UNIX kernel doesn’t interpret files.)

c) Usually the Operating System understands and interprets file types.

• Memory-mapped files are a special case.
a) The Operating System "maps" or "connects" the data in the file with a

region of memory in a process.
b) When the file is closed, memory information is written back to the file.
c) This is a great way to implement shared memory - have several processes

open a memory-mapped file - they then each see the same information.

• Blocking occurs when some entity, (either the user or the Operating System)
must pack bytes into a physical block.

a) Block size is fixed for disks, variable for tape

b) Size determines maximum internal fragmentation

c) We can allow reference to a file as a set of logical records (addressable
units) and then divide (or pack) logical records into physical blocks.

10: FILE SYSTEMS INTERFACE: 2 Rev. 4.0

Example of File Structures

Hash

Hash

Name Loc.

Name Loc.

Filename
Filename

Filename

Disk
Disk

Disk

Link bit
other..

attributes

File header

Index Address
Protection Address
Creation Time
Current Size
Et. cetera

Index Block

Blk 0 Disk Address
Blk 1 Disk Address

Blk N Disk Address

Protection Data

Name/Privileges
Name/Privileges

Data N

Data 0

Data 1

10: FILE SYSTEMS INTERFACE: 3 Rev. 4.0

ACCESS METHODS

• If files had only one "chunk" of data, life would be simple. But for large files,
the files themselves may contain structure, making access faster.

• As discussed in the last chapter, the file system may impose a structure on
the way the file is allocated.

 SEQUENTIAL ACCESS

• Implemented by the filesystem.

• Data is accessed one record right after the last.

• Reads cause a pointer to be moved ahead by one.

• Writes allocate space for the record and move the pointer to the new End Of
File.

• Such a method is reasonable for tape

 DIRECT ACCESS

• Method useful for disks.

• The file is viewed as a numbered sequence of blocks or records.

• There are no restrictions on which blocks are read/written in any order.

• User now says "read n" rather than "read next".

• "n" is a number relative to the beginning of file, not relative to an absolute
physical disk location.

10: FILE SYSTEMS INTERFACE: 4 Rev. 4.0

 OTHER ACCESS METHODS

• Built on top of direct access and often implemented by a user utility.

Indexed ID plus pointer.

An index block says what’s in each remaining block or
contains pointers to blocks containing particular items.
Suppose a file contains many blocks of data arranged by
name alphabetically.

• Example 1: Index contains the name appearing as the first record in each
block. There are as many index entries as there are blocks.
<<< FIGURE 10.5>>>

• Example 2: Index contains the block number where "A" begins, where "B"
begins, etc. Here there are only 26 index entries.

DIRECTORY STRUCTURE

• Directories maintain information about files:

• For a large number of files, may want a directory structure - directories under
directories.

• Information maintained in a directory:

 Name The user visible name.

 Type The file is a directory, a program image, a user file, a link, etc.

 Location Device and location on the device where the file header is located.

 Size Number of bytes/words/blocks in the file.

 Position Current next-read/next-write pointers.

 Protection Access control on read/write/ execute/delete.

• Usage info Open count, time of creation/access, etc.

 Mounting a filesystem occurs when the root of one filesystem is "grafted"
into the existing tree of another filesystem.

• There is a need to PROTECT files and directories.
Actions that might be protected include: read, write, execute, append,
delete, list

