
8: MEMORY MANAGEMENT: 1 REV. 4.0

 MEMORY MANAGEMENT

Just as processes share the CPU, they also share memory. This section is about
mechanisms for doing that sharing.

EXAMPLES OF MEMORY USAGE:

Calculation of an effective address

Fetch from instruction
Use index offset

Example: (Here index is a pointer to an address)

 loop:
 load register, index
 add 42, register
 store register, index
 inc index
 skip_equal index, final_address
 branch loop
 continue

• Relocatable Means that the program image can reside anywhere in
physical memory.

• Binding Mapping logical to physical addresses.
<<< FIGURE 8.1 >>>

This binding can be done at compile/link time. Converts symbolic
to relocatable. Data used within compiled source is offset within
object module.

Can be done at load time. Binds relocatable to physical.

Can be done at run time. Implies that the code can be moved
around during execution.

• The next example shows how a compiler and linker actually determine the
locations of these effective addresses.

8: MEMORY MANAGEMENT: 2 REV. 4.0

 4 void main()
 5 {
 6 printf("Hello, from main\n");
 7 b();
 8 }
 9
 10
 11 void b()
 12 {
 13 printf("Hello, from ’b’\n");
 14 }

ASSEMBLY LANGUAGE LISTING

000000B0: 6BC23FD9 stw %r2,-20(%sp ; main()
000000B4 37DE0080 ldo 64(%sp),%sp
000000B8 E8200000 bl 0x000000C0,%r1 ; get current addr=BC
000000BC D4201C1E depi 0,31,2,%r1
000000C0 34213E81 ldo -192(%r1),%r1 ; get code start area
000000C4 E8400028 bl 0x000000E0,%r2 ; call printf
000000C8 B43A0040 addi 32,%r1,%r26 ; calc. String loc.
000000CC E8400040 bl 0x000000F4,%r2 ; call b
000000D0 6BC23FD9 stw %r2,-20(%sp) ; store return addr
000000D4 4BC23F59 ldw -84(%sp),%r2
000000D8 E840C000 bv %r0(%r2) ; return from main
000000DC 37DE3F81 ldo -64(%sp),%sp

 STUB(S) FROM LINE 6
000000E0: E8200000 bl 0x000000E8,%r1
000000E4 28200000 addil L%0,%r1
000000E8: E020E002 be,n 0x00000000(%sr7,%r1)

000000EC 08000240 nop void b()
000000F0: 6BC23FD9 stw %r2,-20(%sp)
000000F4: 37DE0080 ldo 64(%sp),%sp
000000F8 E8200000 bl 0x00000100,%r1 ; get current addr=F8
000000FC D4201C1E depi 0,31,2,%r1
00000100 34213E01 ldo -256(%r1),%r1 ; get code start area
00000104 E85F1FAD bl 0x000000E0,%r2 ; call printf
00000108 B43A0010 addi 8,%r1,%r26
0000010C 4BC23F59 ldw -84(%sp),%r2
00000110 E840C000 bv %r0(%r2) ; return from b
00000114 37DE3F81 ldo -64(%sp),%sp

8: MEMORY MANAGEMENT: 3 REV. 4.0

 EXECUTABLE IS DISASSEMBLED HERE
00002000 0009000F ;
00002004 08000240 ; . . . @
00002008 48656C6C ; H e l l
0000200C 6F2C2066 ; o , f
00002010 726F6D20 ; r o m
00002014 620A0001 ; b . . .
00002018 48656C6C ; H e l l
0000201C 6F2C2066 ; o , f
00002020 726F6D20 ; r o m
00002024 6D61696E ; m a i n

000020B0 6BC23FD9 stw %r2,-20(%sp) ; main
000020B4 37DE0080 ldo 64(%sp),%sp
000020B8 E8200000 bl 0x000020C0,%r1
000020BC D4201C1E depi 0,31,2,%r1
000020C0 34213E81 ldo -192(%r1),%r1
000020C4 E84017AC bl 0x00003CA0,%r2
000020C8 B43A0040 addi 32,%r1,%r26
000020CC E8400040 bl 0x000020F4,%r2
000020D0 6BC23FD9 stw %r2,-20(%sp)
000020D4 4BC23F59 ldw -84(%sp),%r2
000020D8 E840C000 bv %r0(%r2)
000020DC 37DE3F81 ldo -64(%sp),%sp
000020E0 E8200000 bl 0x000020E8,%r1 ; stub
000020E4 28203000 addil L%6144,%r1
000020E8 E020E772 be,n 0x000003B8(%sr7,%r1)
000020EC 08000240 nop
000020F0 6BC23FD9 stw %r2,-20(%sp) ; b
000020F4 37DE0080 ldo 64(%sp),%sp
000020F8 E8200000 bl 0x00002100,%r1
000020FC D4201C1E depi 0,31,2,%r1
00002100 34213E01 ldo -256(%r1),%r1
00002104 E840172C bl 0x00003CA0,%r2
00002108 B43A0010 addi 8,%r1,%r26
0000210C 4BC23F59 ldw -84(%sp),%r2
00002110 E840C000 bv %r0(%r2)
00002114 37DE3F81 ldo -64(%sp),%sp

00003CA0 6BC23FD9 stw %r2,-20(%sp) ; printf
00003CA4 37DE0080 ldo 64(%sp),%sp
00003CA8 6BDA3F39 stw %r26,-100(%sp)
00003CAC 2B7CFFFF addil L%-26624,%dp
00003CB0 6BD93F31 stw %r25,-104(%sp)
00003CB4 343301A8 ldo 212(%r1),%r19
00003CB8 6BD83F29 stw %r24,-108(%sp)
00003CBC 37D93F39 ldo -100(%sp),%r25
00003CC0 6BD73F21 stw %r23,-112(%sp)
00003CC4 4A730009 ldw -8188(%r19),%r19
00003CC8 B67700D0 addi 104,%r19,%r23
00003CCC E8400878 bl 0x00004110,%r2
00003CD0 08000258 copy %r0,%r24
00003CD4 4BC23F59 ldw -84(%sp),%r2
00003CD8 E840C000 bv %r0(%r2)
00003CDC 37DE3F81 ldo -64(%sp),%sp
00003CE0 E8200000 bl 0x00003CE8,%r1
00003CE8 E020E852 be,n 0x00000428(%sr7,%r1)

8: MEMORY MANAGEMENT: 4 REV. 4.0

• Dynamic loading Routine isn’t called into memory until needed. May or may
not require binding at run time.

• Dynamic Linking Code is mapped or linked at execution time. Example is
system libraries.

• Memory Management Performs the above operations. Usually requires
hardware support.

LOGICAL VERSUS PHYSICAL ADDRESS SPACE:

• The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

Logical address generated by the CPU; also referred to as a virtual
address.

Physical address address seen by the memory unit (hardware).

• Logical and physical addresses are the same in compile-time and load-time
address binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding schemes.

• Memory-management Unit (MMU) is a hardware device that maps virtual to
physical addresses.

• The user program deals with logical addresses; it never sees the real physical
addresses.

8: MEMORY MANAGEMENT: 5 REV. 4.0

SWAPPING

• Several processes share the same physical memory and are swapped to/from
disk in turn. What are pros and cons of this?

• Medium term scheduler tries to make sure ALL processes get share of the
action.

• If a higher priority job wants action, then can swap IN that process by swapping
OUT some other process.

• Swapping requires a backing store.

• How much time is required for swapping? (DO calculation)

SINGLE PARTITION ALLOCATION

BARE MACHINE:

• No protection, no utilities, no overhead.

• This is the simplest form of memory management.

• Used by hardware diagnostics, by system boot code, real time/dedicated
systems.

• logical == physical

• User can have complete control. Commensurably, the operating system has
none.

8: MEMORY MANAGEMENT: 6 REV. 4.0

DEFINITION OF PARTITIONS:

• Division of physical memory into fixed sized regions. (Allows addresses spaces
to be distinct = one user can’t muck with another user, or the system.)

• The number of partitions determines the level of multiprogramming. Partition is
given to a process when it’s scheduled.

• Protection around each partition determined by

 bounds (upper, lower)
 base / limit.

• These limits are done in hardware.

RESIDENT MONITOR:

• Primitive Operating System.

• Usually in low memory where interrupt vectors are placed.

• Must check each memory reference against fence (fixed or variable) in
hardware or register. If user generated address < fence, then illegal.

• User program starts at fence -> fixed for duration of execution. Then user code
has fence address built in. But only works for static-sized monitor.

• If monitor can change in size, start user at high end and move back, OR use
fence as base register that requires address binding at execution time. Add
base register to every generated user address.

• Isolate user from physical address space using logical address space.

• Concept of "mapping addresses". <<< FIGURE 8.6 >>>

8: MEMORY MANAGEMENT: 7 REV. 4.0

MULTIPLE-PARTITION ALLOCATION

JOB SCHEDULING

• Must take into account who wants to run, the memory needs, and partition
availability. (This is a combination of short/medium term scheduling.)

• Sequence of events:

1. In an empty memory slot, load a program
2. THEN it can compete for CPU time.
3. Upon job completion, the partition becomes available.

• Can determine memory size required (either user specified or "automatically"
).

DYNAMIC STORAGE

• (Variable sized holes in memory allocated on need.)

• Operating System keeps table of this memory - space allocated based on
table.

• Adjacent freed space merged to get largest holes - buddy system.
<<< FIGURE 8.8>>>

First fit - allocate the first hole that’s big enough.
 Best fit - allocate smallest hole that’s big enough.
 Worst fit - allocate largest hole.

 (First fit is fastest, worst fit has lowest memory utilization.)

• Avoid small holes (external fragmentation). This occurs when there are many
small pieces of free memory.

• What should be the minimum size allocated, allocated in what chunk size?

• Want to also avoid internal fragmentation. This is when memory is handed
out in some fixed way (power of 2 for instance) and requesting program
doesn’t use it all.

8: MEMORY MANAGEMENT: 8 REV. 4.0

LONG TERM SCHEDULING

• If a job doesn’t fit in memory, the scheduler can

wait for memory
skip to next job and see if it fits.

• What are the pros and cons of each of these?

• There’s little or no internal fragmentation, but a great deal of external
fragmentation. Look again at <<< FIGURE 8.8 >>>

COMPACTION

• Trying to move free memory to one large block. <<< FIGURE 8.10 >>>

• Only possible if programs linked with dynamic relocation (base and limit.)

• There are many ways to move programs in memory. <<< FIGURE 8.11 >>>

• Swapping: if using static relocation, code/data must return to same place. But if
dynamic, can reenter at more advantageous memory.

8: MEMORY MANAGEMENT: 9 REV. 4.0

PAGING:

Permits a program’s memory to be physically noncontiguous so it can be allocated
from wherever available. This avoids fragmentation and compaction.

HARDWARE

• An address is determined by:

 page number (index into table) + offset
 ---> mapping into --->
 base address (from table) + offset.

 <<< FIGURE 8.12 >>>
 Frames = physical blocks
 Pages = logical blocks

• Size of frames/pages is defined by hardware (power of 2 to ease calculations)

 EXAMPLE: <<< FIGURE 8.14 >>>

IMPLEMENTATION OF THE PAGE TABLE

• A 32 bit machine can address 4 gigabytes which is 4 million pages (at 1024
bytes/page). WHO says how big a page is, anyway?

• Could use dedicated registers (OK only with small tables.)

• Could use a register pointing to table in memory (slow access.)

• Cache or associative memory (TLB = Translation Lookaside Buffer):
simultaneous search is fast and uses only a few registers.<<<FIGURE
8.16>>>

Issues include:

key and value
 hit rate 90 - 98% with 100 registers
 add entry if not found

 Effective access time = %fast * time_fast + %slow * time_slow

 Relevant times:
 20 nanoseconds to search associative memory – the TLB.
 200 nanoseconds to access memory and bring it into TLB for next time.

 Calculate time of access:
 hit = 1 search + 1 memory reference
 miss = 1 search + 1 mem reference(of page table) + 1 mem reference.

8: MEMORY MANAGEMENT: 10 REV. 4.0

SHARED PAGES

• Data occupying one physical page, but pointed to by multiple logical pages.

• Useful for common code - must be write protected. (NO writeable data mixed
with code.) <<< FIGURE 8.21 >>>

• Shared pages are extremely useful for read/write communication between
processes.

INVERTED PAGE TABLE:

• One entry for each real page of memory; entry consists of the virtual address
of the page stored in that real memory location, with information about the
process that owns that page.

• Essential when you need to do work on the page and must find out what
process owns it.

• Use hash table to limit the search to one - or at most a few - page table entries.

PROTECTION

• Bits associated with page tables.

• Can have read, write, execute, valid bits

• Valid bit says page isn’t in address space.

• Write to write-protected page causes a fault. Touching an invalid page causes
a fault.

8: MEMORY MANAGEMENT: 11 REV. 4.0

ADDRESS MAPPING

• Allows physical memory larger than logical memory.

• Useful on 32 bit machines with more than 32-bit addressable words of
memory.

• The operating system keeps a frame containing descriptions of physical pages:
if allocated, then to which logical page in which process.

MULTILEVEL PAGE TABLE

• A means of using page tables for large address spaces. Best seen with an
example <<< FIGURE 8.18 >>>

SEGMENTATION:

USER’S VIEW OF MEMORY

• A programmer views a process consisting of unordered segments with various
purposes. This view is more useful than thinking of a linear array of words. We
really don’t care at what address a segment is located.

• Typical segments include

 global variables
 procedure call stack
 code for each function

local variables for each
large data structures

• Logical address = segment name (number) + offset

• Memory is addressed by both segment and offset.

HARDWARE

• Must map a dyad into one-dimensional address. <<< FIGURES 8.23, 8.24 >>>

• base / limit pairs in a segment table.

8: MEMORY MANAGEMENT: 12 REV. 4.0

PROTECTION AND SHARING

• Addresses are associated with a logical unit (like data, code, etc.) so protection
is easy.

• Can do bounds checking on arrays

• Sharing specified at a logical level, a segment has an attribute called
"shareable".

• Can share some code but not all - for instance a common library of
subroutines.

 <<< FIGURE 8.25 >>>

FRAGMENTATION

• Use variable allocation since segment lengths vary.

• Again have issue of fragmentation; Smaller segments means less
fragmentation. Can use compaction since segments are relocatable.

PAGED SEGMENTATION

• Combination of paging and segmentation.

 address = frame at (page table base for segment
 + offset into page table)
 + offset into memory

• Look at example of Intel architecture. <<< FIGURE 8.28 >>>

