
6.2 : PROCESS SYNCH. 1 REV. 4.0

PROCESS COORDINATION II

SOME PROCESS COORDINATION PROBLEMS

THE BOUNDED BUFFER (PRODUCER / CONSUMER) PROBLEM:

• This is the same producer / consumer problem as before. But now we’ll do it
with signals and waits. Remember: a wait decreases its argument and a
signal increases its argument.

 INITIALIZE: mutex = 1; empty = n; full = 0;

producer:
 repeat
 /* produce an item in nextp */
 wait (empty); /* Do action */
 wait (mutex); /* Buffer guard*/
 /* add nextp to buffer */
 signal (mutex);
 signal (full);
 until (false);

consumer:
 repeat
 wait (full);
 wait (mutex);
 /* remove an item from buffer to nextc */
 signal (mutex);
 signal (empty);
 /* consume an item in nextc */
 until (false);

6.2 : PROCESS SYNCH. 2 REV. 4.0

THE READERS/WRITERS PROBLEM:

• This is the same as the Producer / Consumer problem except - we now can
have many concurrent readers and one exclusive writer.

• There are shared (for the readers) and exclusive (for the writer) locks.

• Two possible (contradictory) guidelines can be used:

a) No reader is kept waiting unless a writer holds the lock (the readers have
precedence).

b) If a writer is waiting for access, no new reader gains access (writer has
precedence).

• (NOTE: starvation can occur on either of these rules if they are followed
rigorously.)

 <<< This code is FIGURES 6.12, 6.13 >>>

var mutex, wrt: semaphore;
readcount: integer;

Writer:
repeat

wait(wrt);
/* writing is performed */
signal(wrt);

until(false);

Reader:
 repeat

wait(mutex); /* Allow 1 reader in entry*/
 readcount = readcount + 1;
 if readcount == 1 then wait(wrt); /* 1st reader locks writer */
signal(mutex);

/* reading is performed */

wait(mutex);
 readcount = readcount - 1;
 if readcount == 0 then signal(wrt); /*last reader frees writer */
signal(mutex);

 until(false);

6.2 : PROCESS SYNCH. 3 REV. 4.0

THE DINING PHILOSOPHERS PROBLEM:

• 5 philosophers with 5 chopsticks sit around a circular table. They each want to
eat at random times and must pick up the chopsticks on their right and on their
left.

• Clearly deadlock is rampant (and starvation possible.)

• Several solutions are possible:

a) Allow only 4 philosophers to be hungry at a time.

b) Allow pickup only if both chopsticks are available. (Done in critical section)

c) Odd # philosopher always picks up left chopstick 1st, even # philosopher
always picks up right chopstick 1st.

6.2 : PROCESS SYNCH. 4 REV. 4.0

CRITICAL REGIONS:

• High Level synchronization construct implemented in a programming language.

• A shared variable v of type T, is declared as: var v; shared T

• Variable v is accessed only inside a statement: region v when B do S

where B is a Boolean expression.

• While statement S is being executed, no other process can access variable v.

• Regions referring to the same shared variable exclude each other in time.

• When a process tries to execute the region statement, the Boolean expression
B is evaluated.

• If B is true, statement S is executed.

• If it is false, the process is delayed until B is true and no other process is in
the region associated with v.

EXAMPLE: Bounded Buffer:

Shared variables declared as:

var buffer: shared record
 pool: array [0.. n - 1] of item;
 count, in, out: integer;

end;

Producer process inserts nextp into the shared buffer:

region buffer when count < n
 do begin

pool[in] = nextp;
in = in + 1 mod n;
count = count + 1;

 end;

Consumer process removes an item from the shared buffer and puts it in nextc.

region buffer when count > n
 do begin

nextc = pool[out];
out = out + 1 mod n;
count = count - 1;

 end;

6.2 : PROCESS SYNCH. 5 REV. 4.0

SO, HOW IS SYNCHRONIZATION REALLY USED:

• The book discusses Solaris 2 as an example, but other operating systems
work this way as well.

• Spin locks are used around critical sections that should be held only a short
time. This is determined by:

a) Is the lock holder currently running?

b) Have we already spun for a while?

c) Spin for some time and then cause reschedule. (This is very common
because it’s deterministic.)

• Long held locks (those held across a process reschedule or during a disk
access) always cause a reschedule / sleep.

Atomic Transactions

• Transaction – a program unit that must be executed atomically; that is, either
all the operations associated with it are executed to completion, or none are
performed.

• Must preserve atomicity despite possibility of failure.

• We are concerned here with ensuring transaction atomicity in an environment
where failures result in the loss of information on volatile storage.

• We will look at several common uses of atomic transactions – situations where
atomicity is required.

6.2 : PROCESS SYNCH. 6 REV. 4.0

Log-Based Recovery

• Write-ahead log - all updates are recorded on the log, which is kept in stable
storage; log has following fields:

a) transaction name

b) data item name; old value; new value

• The log has a record of < Ti starts >, and either < Ti commits > if the
transactions commits, or < Ti aborts > if the transaction aborts.

• Recovery algorithm uses two procedures:

undo(Ti) - restores value of all data updated by transaction Ti to the old
values. It is invoked if the log contains record < Ti starts >, but not <Ti
commits >.

redo(Ti) - sets value of all data updated by transaction Ti to the new
values. It is invoked if the log contains both < Ti starts > and < Ti
commits>.

Checkpoints - reduce recovery overhead

• Output all log records currently residing in volatile storage onto stable
storage.

• Output all modified data residing in volatile storage to stable storage.

• Output log record < checkpoint > onto stable storage.

• Recovery routine examines log to determine the most recent transaction Ti
that started executing before the most recent checkpoint took place.

Search log backward for first < checkpoint > record.
Find subsequent < Ti start > record.

• redo and undo operations need to be applied to only transaction Ti and all
transactions Tj that started executing after transaction Ti.

6.2 : PROCESS SYNCH. 7 REV. 4.0

Concurrent Atomic Transactions

Serial schedule - the transactions are executed sequentially in some order.

Example of a serial schedule in which T0 is followed by T1 :

T0 | T1
--

read(A) |
write(A) |
read(B) |
write(B) |

| read(A)
| write(A)
| read(B)
| write(B)

Conflicting operations - Oi and Oj conflict if they access the same data item,
and at least one of these operations is a write operation.

Conflict serializable schedule - schedule that can be transformed into a serial
schedule by a series of swaps of nonconflicting operations.

Example of a concurrent serializable schedule:

T0 | T1
--

|
read(A) |
write(A) |

| read(A)
| write(A)

read(B) |
write(B) |

| read(B)
| write(B)

• Locking protocol governs how locks are acquired and released; data item
can be locked in following modes:

Shared: If Ti has obtained a shared-mode lock on data item Q, then Ti can
read this item, but it cannot write Q.

Exclusive: If Ti has obtained an exclusive- mode lock on data item Q, then
Ti can both read and w rite Q.

6.2 : PROCESS SYNCH. 8 REV. 4.0

Two-phase locking protocol

• Growing phase: A transaction may obtain locks, but may not release any
lock.

• Shrinking phase: A transaction may release locks, but may not obtain any
new locks.

• The two-phase locking protocol ensures conflict serializability, but does not
ensure freedom from deadlock.

• Timestamp-ordering scheme - transaction ordering protocol for determining
serializability order.

a) With each transaction Ti in the system, associate a unique fixed
timestamp, denoted by TS(Ti).

b) If Ti has been assigned timestamp TS(Ti), and a new transaction Tj
enters the system, then TS(Ti) < TS(Tj).

• Implement by assigning two timestamp values to each data item Q.

a) W-timestamp (Q) - denotes largest timestamp of any transaction that
executed write (Q) successfully.

b) R-timestamp (Q) - denotes largest timestamp of any transaction that
executed read (Q) successfully.

• Example of a schedule possible under the timestamp protocol:

T2 | T3
--

read(B) |
| read(B)
| write(B)

read(A) |
| read(A)
| write(A)

• There are schedules that are possible under the two-phase locking protocol
but are not possible under the timestamp protocol, and vice versa.

• The timestamp-ordering protocol ensures conflict serializability; conflicting
operations are processed in timestamp order.

