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PROCESS COORDINATION II

SOME PROCESS COORDINATION PROBLEMS

THE BOUNDED BUFFER ( PRODUCER / CONSUMER ) PROBLEM:

• This is the same producer / consumer problem as before. But now we’ll do it
with signals and waits.  Remember: a  wait decreases  its argument and a
signal  increases its argument.

 INITIALIZE: mutex = 1;   empty = n;   full = 0;

producer:
  repeat
  /* produce an item in nextp */
  wait (empty);   /* Do action     */
  wait (mutex);   /* Buffer guard*/
  /* add nextp to buffer  */
  signal (mutex);
  signal (full);
  until ( false );

consumer:
  repeat
  wait (full);
  wait (mutex);
  /* remove an item from buffer to nextc */
  signal (mutex);
  signal (empty);
  /* consume an item in nextc */
  until ( false );
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THE READERS/WRITERS PROBLEM:

• This is the same as the Producer / Consumer problem except - we now can
have many concurrent readers and one exclusive writer.

• There are shared (for the readers) and   exclusive (for the writer) locks.

• Two possible ( contradictory ) guidelines can be used:

a) No reader is kept waiting unless a writer holds the lock (the readers have
precedence).

b) If a writer is waiting for access, no new reader gains access (writer has
precedence).

• ( NOTE: starvation can occur on either of these rules if they are followed
rigorously.)

 <<< This code is FIGURES 6.12, 6.13 >>>

var mutex,  wrt: semaphore;
readcount: integer;

Writer:
repeat

wait( wrt );
/*   writing is performed    */
signal(  wrt  );

until( false );

Reader:
     repeat

wait( mutex );        /* Allow 1 reader in entry*/
    readcount = readcount + 1;
    if readcount == 1  then  wait(wrt );    /* 1st reader locks writer */
signal( mutex );

/*   reading is performed  */

wait( mutex );
    readcount = readcount - 1;
    if readcount == 0  then  signal(wrt );   /*last reader frees writer */
signal( mutex );

       until( false );
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THE DINING PHILOSOPHERS PROBLEM:

• 5 philosophers with 5 chopsticks sit around a circular table.  They each want to
eat at random times and must pick up the chopsticks on their right and on their
left.

• Clearly deadlock is rampant ( and starvation possible.)

• Several solutions are possible:

a) Allow only 4 philosophers to be hungry at a time.

b) Allow pickup only if both chopsticks are available. ( Done in critical section )

c) Odd # philosopher always picks up left chopstick 1st, even # philosopher
always picks up right chopstick 1st.
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CRITICAL REGIONS:

• High Level synchronization construct implemented in a programming language.

• A shared variable  v  of type T, is declared as: var  v;  shared T

• Variable  v  is accessed only inside a statement: region  v  when  B  do  S

where B is a Boolean expression.

• While statement S is being executed, no other process can access variable v.

• Regions referring to the same shared variable exclude each other in time.

• When a process tries to execute the region statement, the Boolean expression
B is evaluated.

• If  B  is true, statement  S  is executed.

• If it is false, the process is delayed until  B  is true and no other process is in
the region associated with  v.

EXAMPLE:  Bounded Buffer:

Shared variables declared as:

var buffer:   shared record
 pool:       array [ 0.. n - 1]  of  item;
 count,  in,  out:               integer;

end;

Producer process inserts nextp into the shared buffer:

region   buffer   when  count  <  n
    do  begin

pool[in]  =  nextp;
in          =  in  +  1  mod n;
count     =  count  + 1;

    end;

Consumer process removes an item from the shared buffer and puts it in   nextc.

region   buffer   when  count  >  n
    do  begin

nextc  =  pool[out];
out      =  out  +  1  mod n;
count   =  count  - 1;

    end;
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SO, HOW IS SYNCHRONIZATION REALLY USED:

• The book discusses Solaris 2 as an example, but other operating systems
work this way as well.

• Spin locks are used around critical sections that should be held only a short
time.  This is determined by:

a) Is the lock holder currently running?

b) Have we already spun for a while?

c) Spin for some time and then cause reschedule.  (This is very common
because it’s deterministic.)

• Long held locks (those held across a process reschedule or during a disk
access) always cause a reschedule / sleep.

Atomic Transactions

• Transaction – a program unit that must be executed atomically; that is, either
all the operations associated with it are executed to completion, or none are
performed.

• Must preserve atomicity despite possibility of failure.

• We are concerned here with ensuring transaction atomicity in an environment
where failures result in the loss of information on volatile storage.

• We will look at several common uses of atomic transactions – situations where
atomicity is required.
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Log-Based Recovery

• Write-ahead log - all updates are recorded on the log, which is kept in stable
storage; log has following fields:

a) transaction name

b) data item name;  old value;  new value

• The log has a record of < Ti starts >, and either < Ti commits > if the
transactions commits, or < Ti aborts > if the transaction aborts.

• Recovery algorithm uses two procedures:

undo( Ti ) - restores value of all data updated by transaction Ti to the old
values.  It is invoked if the log contains record  < Ti starts >, but not <Ti
commits >.

redo( Ti ) - sets value of all data updated by transaction Ti to the new
values.  It is invoked if the log contains both  < Ti starts >  and < Ti
commits>.

Checkpoints - reduce recovery overhead

• Output all log records currently residing in volatile storage onto stable
storage.

• Output all modified data residing in volatile storage to stable storage.

• Output log record < checkpoint > onto stable storage.

• Recovery routine examines log to determine the most recent transaction Ti
that started executing before the most recent checkpoint took place.

Search log backward for first < checkpoint > record.
Find subsequent  < Ti start > record.

• redo and undo operations need to be applied to only transaction Ti and all
transactions Tj that started executing after transaction Ti.
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Concurrent Atomic Transactions

Serial schedule - the transactions are executed sequentially in some order.

Example of a serial schedule in which T0 is followed by T1 :

T0 | T1
------------------------------------------------------------------------------------------------

read( A ) |
write( A ) |
read( B ) |
write( B ) |

| read( A )
| write( A )
| read( B )
| write( B )

Conflicting operations - Oi and Oj conflict if they access the same data item,
and at least one of these operations is a write operation.

Conflict serializable schedule - schedule that can be transformed into a serial
schedule by a series of swaps of nonconflicting operations.

Example of a concurrent serializable schedule:

T0 | T1
------------------------------------------------------------------------------------------------

|
read( A ) |
write( A ) |

| read( A )
| write( A )

read( B ) |
write( B ) |

| read( B )
| write( B )

• Locking protocol governs how locks are acquired and released; data item
can be locked in following modes:

Shared: If Ti has obtained a shared-mode lock on data item Q, then Ti can
read this item, but it cannot write Q.

Exclusive: If Ti has obtained an exclusive- mode lock on data item Q, then
Ti can both read and w rite Q.
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Two-phase locking protocol

• Growing phase: A transaction may obtain locks, but may not release any
lock.

• Shrinking phase: A transaction may release locks, but may not obtain any
new locks.

• The two-phase locking protocol ensures conflict serializability, but does not
ensure freedom from deadlock.

• Timestamp-ordering scheme - transaction ordering protocol for determining
serializability order.

a) With each transaction Ti in the system, associate a unique fixed
timestamp, denoted by TS( Ti ).

b) If Ti has been assigned timestamp TS( Ti ), and a new transaction Tj
enters the system, then TS( Ti ) < TS( Tj ).

• Implement by assigning two timestamp values to each data item Q.

a) W-timestamp (Q) - denotes largest timestamp of any transaction that
executed write (Q) successfully.

b) R-timestamp (Q) - denotes largest timestamp of any transaction that
executed read (Q) successfully.

• Example of a schedule possible under the timestamp protocol:

T2 | T3
------------------------------------------------------------------------------------------------

read( B ) |
| read( B )
| write( B )

read( A ) |
| read( A )
| write( A )

• There are schedules that are possible under the two-phase locking protocol
but are not possible under the timestamp protocol, and vice versa.

• The timestamp-ordering protocol ensures conflict serializability; conflicting
operations are processed in timestamp order.


