PROCESS COORDINATION Il

SOME PROCESS COORDINATION PROBLEMS

THE BOUNDED BUFFER (PRODUCER / CONSUMER) PROBLEM:

* This is the same producer / consumer problem as before. But now we’ll do it
with signals and waits. Remember: a wait decreases its argument and a
signal increases its argument.

INITIALIZE: mutex =1; empty =n; full =0;

producer:

repeat
[* produce an item in nextp */
wait (empty); /* Do action */
wait (mutex); /* Buffer guard*/
/* add nextp to buffer */
signal (mutex);
signal (full);

until (false);

consumer:

repeat
wait (full);
wait (mutex);
/* remove an item from buffer to nextc */
signal (mutex);
signal (empty);
/* consume an item in nextc */

until (false);

6.2 : PROCESS SYNCH. 1 REV. 4.0

THE READERS/WRITERS PROBLEM:

6.2 :

This is the same as the Producer / Consumer problem except - we now can
have many concurrent readers and one exclusive writer.

There are shared (for the readers) and exclusive (for the writer) locks.
Two possible (contradictory) guidelines can be used:

a) No reader is kept waiting unless a writer holds the lock (the readers have
precedence).

b) If a writer is waiting for access, no new reader gains access (writer has
precedence).

(NOTE: starvation can occur on either of these rules if they are followed
rigorously.)

<<< This code is FIGURES 6.12, 6.13 >>>

var mutex, wrt: semaphore;
readcount: integer;

Writer:
repeat
wait(wrt);
/* writing is performed */
signal(wrt);
until(false);
Reader:
repeat
wait(mutex); /* Allow 1 reader in entry*/

readcount =readcount + 1;
if readcount ==1 then wait(wrt); /* 1st reader locks writer */
signal(mutex);

[* reading is performed */

wait(mutex);
readcount = readcount - 1;
if readcount == 0 then signal(wrt); /*last reader frees writer */
signal(mutex);
until(false);

PROCESS SYNCH. 2 REV. 4.0

THE DINING PHILOSOPHERS PROBLEM:
» 5 philosophers with 5 chopsticks sit around a circular table. They each want to
E?: at random times and must pick up the chopsticks on their right and on their
* Clearly deadlock is rampant (and starvation possible.)
e Several solutions are possible:
a) Allow only 4 philosophers to be hungry at a time.

b) Allow pickup only if both chopsticks are available. (Done in critical section)

c) Odd # philosopher always picks up left chopstick 1st, even # philosopher
always picks up right chopstick 1°.

6.2 : PROCESS SYNCH. 3 REV. 4.0

CRITICAL REGIONS:

6.2 :

» High Level synchronization construct implemented in a programming language.

* A shared variable v of type T, is declared as: var v; shared T

Variable v is accessed only inside a statement: region v when B do S

where B is a Boolean expression.

While statement S is being executed, no other process can access variable v.
* Regions referring to the same shared variable exclude each other in time.

* When a process tries to execute the region statement, the Boolean expression
B is evaluated.

« |f B istrue, statement S is executed.

« Ifitis false, the process is delayed until B is true and no other process is in
the region associated with v.

EXAMPLE: Bounded Buffer:
Shared variables declared as:
var buffer: shared record
pool: array [0.. n- 1] of item;
count, in, out: integer;
end;

Producer process inserts nextp into the shared buffer:

region buffer when count < n

do begin
pool[in] = nextp;
in = in + 1 mod n;
count = count +1;
end;

Consumer process removes an item from the shared buffer and puts it in nextc.

region buffer when count > n

do begin
nextc = poolfout];
out = out + 1 mod n;
count = count -1;

end;

PROCESS SYNCH. 4 REV. 4.0

SO, HOW IS SYNCHRONIZATION REALLY USED:

The book discusses Solaris 2 as an example, but other operating systems
work this way as well.

Spin locks are used around critical sections that should be held only a short
time. This is determined by:

a) Is the lock holder currently running?
b) Have we already spun for a while?

c) Spin for some time and then cause reschedule. (This is very common
because it's deterministic.)

Long held locks (those held across a process reschedule or during a disk
access) always cause a reschedule / sleep.

Atomic Transactions

6.2 :

Transaction — a program unit that must be executed atomically; that is, either
all the operations associated with it are executed to completion, or none are
performed.

Must preserve atomicity despite possibility of failure.

We are concerned here with ensuring transaction atomicity in an environment
where failures result in the loss of information on volatile storage.

We will look at several common uses of atomic transactions — situations where
atomicity is required.

PROCESS SYNCH. 5 REV. 4.0

Log-Based Recovery

Write-ahead log - all updates are recorded on the log, which is kept in stable
storage; log has following fields:

a) transaction name
b) dataitem name; old value; new value

The log has a record of < Ti starts >, and either < Ti commits > if the
transactions commits, or < Ti aborts > if the transaction aborts.

Recovery algorithm uses two procedures:

undo(Ti) - restores value of all data updated by transaction Ti to the old
values. It is invoked if the log contains record < Ti starts >, but not <Ti
commits >.

redo(Ti) - sets value of all data updated by transaction Ti to the new
values. It is invoked if the log contains both < Ti starts > and < Ti
commits>.

Checkpoints - reduce recovery overhead

6.2 :

Output all log records currently residing in volatile storage onto stable
storage.

Output all modified data residing in volatile storage to stable storage.
Output log record < checkpoint > onto stable storage.

Recovery routine examines log to determine the most recent transaction Ti
that started executing before the most recent checkpoint took place.

Search log backward for first < checkpoint > record.
Find subsequent < Ti start > record.

redo and undo operations need to be applied to only transaction Ti and all
transactions Tj that started executing after transaction Ti.

PROCESS SYNCH. 6 REV. 4.0

Concurrent Atomic Transactions

6.2 :

Serial schedule - the transactions are executed sequentially in some order.

Example of a serial schedule in which TO is followed by T1 :

TO | T1

read(A) |

write(A) |

read(B) |

write(B) |
| read(A)
| write(A)
| read(B)
| write(B)

Conflicting operations - Oi and Oj conflict if they access the same data item,
and at least one of these operations is a write operation.

Conflict serializable schedule - schedule that can be transformed into a serial
schedule by a series of swaps of nonconflicting operations.

Example of a concurrent serializable schedule:

TO | Tl

I

read(A) |

write(A) |
| read(A)
| write(A)

read(B) |

write(B) |
| read(B)
| write(B)

* Locking protocol governs how locks are acquired and released; data item
can be locked in following modes:

Shared: If Ti has obtained a shared-mode lock on data item Q, then Ti can
read this item, but it cannot write Q.

Exclusive: If Ti has obtained an exclusive- mode lock on data item Q, then
Ti can both read and w rite Q.

PROCESS SYNCH. 7 REV. 4.0

Two-phase locking protocol

6.2 :

Growing phase: A transaction may obtain locks, but may not release any
lock.

Shrinking phase: A transaction may release locks, but may not obtain any
new locks.

The two-phase locking protocol ensures conflict serializability, but does not
ensure freedom from deadlock.

Timestamp-ordering scheme - transaction ordering protocol for determining
serializability order.

a) With each transaction Ti in the system, associate a unique fixed
timestamp, denoted by TS(Ti).

b) If Ti has been assigned timestamp TS(Ti), and a new transaction Tj
enters the system, then TS(Ti) < TS(Tj).

Implement by assigning two timestamp values to each data item Q.

a) W-timestamp (Q) - denotes largest timestamp of any transaction that
executed write (Q) successfully.

b) R-timestamp (Q) - denotes largest timestamp of any transaction that
executed read (Q) successfully.

Example of a schedule possible under the timestamp protocol:

T2 | T3
read(B) |
| read(B)
| write(B)
read(A) |
| read(A)
| write(A)

There are schedules that are possible under the two-phase locking protocol
but are not possible under the timestamp protocol, and vice versa.

The timestamp-ordering protocol ensures conflict serializability; conflicting
operations are processed in timestamp order.

PROCESS SYNCH. 8 REV. 4.0

