
6.1 : PROCESS SYNCH. 1 REV. 4.0

PROCESS SYNCHRONIZATION I

THE PRODUCER CONSUMER PROBLEM

A producer process "produces" information "consumed" by a consumer process.

Consider the following code segments:

• Does it work?

• Are all buffer locations utilized?

 initialize: in = out = 0;

 Producer

 Repeat forever
....
produce an item in nextp
while in + 1 mod n == out do no-op;

 buffer[in] = nextp;
 in = in + 1 mod n;

 until false;

 Consumer

 Repeat forever
 ….

while in == out do no-op;
nextc = buffer[out];
out = out + 1 mod n;
 ...
consume the item in nextc
 ...

 until false;

6.1 : PROCESS SYNCH. 2 REV. 4.0

• How about this implementation? Does it work?

 initialize: in = out = counter = 0;

 Producer

 Repeat forever

 produce an item in nextp

 while counter == n do no-op;

 buffer[in] = nextp;
 in = in + 1 mod n;
 counter = counter + 1;

 until false;

Consumer

 Repeat forever
 while counter == 0 do no-op;

 nextc = buffer[out];
 out = out + 1 mod n;
 counter = counter - 1;
 ...
 consume the item in nextc
 ...

 until false;

 Note that counter = counter + 1; Ä this line is NOT what it seems!!

 is really --> register = counter
 register = register + 1
 counter = register

At a micro level, the following scenario could occur using this code:

TO; Producer Execute register1 = counter register1 = 5
T1; Producer Execute register1 = register1 + 1 register1 = 6
T2; Consumer Execute register2 = counter register2 = 5
T3; Consumer Execute register2 = register2 - 1 register2 = 4
T4; Producer Execute counter = register1 counter = 6
T5; Consumer Execute counter = register2 counter = 4

6.1 : PROCESS SYNCH. 3 REV. 4.0

CRITICAL SECTIONS:

A section of code, common to n cooperating processes, in which the processes
may be accessing common variables.

A Critical Section Environment contains:

Entry section Code requesting entry into the critical region.

Critical Section Code in which only one process can execute at any one
time.

Exit section The end of the critical region, releasing or allowing others
in.

Remainder section Rest of the code AFTER the critical region.

The critical section must ENFORCE ALL THREE of the following rules:

Mutual Exclusion No more than one process can execute in its critical
section at one time.

Progress If no one is in the critical section and someone wants in,
then those processes not in their remainder section must
be able to decide in a finite time who should go in.

Bounded Wait All requesters must eventually be let into the critical
section.

The hardware must have (minimally):

• Indivisible instructions (what are they?)

• Atomic load, store, test instruction. For instance, if a store and test occur
simultaneously, the test gets EITHER the old or the new, but not some
combination.

• Two atomic instructions, if executed simultaneously, behave as if executed
sequentially.

6.1 : PROCESS SYNCH. 4 REV. 4.0

TWO PROCESSES SOFTWARE SOLUTIONS:

Here we try a succession of increasingly complicated solutions to the problem of
creating valid entry sections.

NOTE: In all examples, i is the current process, j the "other" process. In
these examples, envision the same code running on two processors at the same
time.

TOGGLED ACCESS:

The code alternately allows each of the processes access in turn. But what
happens, for example, if i wants to get in twice?

repeat
while (turn ^= i) do no-op;
/* critical section */
turn = j;
/* remainder section */

until (false);

• Are the three Critical Section Requirements Met?

NOTE: The equivalent C code for this is:

while (TRUE)
 {
 while (turn ^= i);
 /* Critical Section */
 turn = j;
}

FLAG FOR EACH PROCESS INDICATES STATE:

Each process maintains a flag indicating that it wants to get into the critical
section. It then checks the flag of the other process and doesn’t enter the critical
section if that other process wants to get in.

var flag: array [0..1] of Boolean;

repeat
flag[i] = true;

 while (flag[j]) do no-op;
 /* critical section */
 flag[i] = false;
 /* remainder section */
 until (false);

• Are the three Critical Section Requirements Met?

6.1 : PROCESS SYNCH. 5 REV. 4.0

FLAG TO REQUEST ENTRY:

Each processes sets a flag to request entry. But each process toggles a bit to
allow the other in first.

This code is executed for each process i.

 var flag: array [0..1] of Boolean;
 turn: 0..1;

 repeat
 flag[i] = true;
 turn = j;
 while (flag[j] and turn == j) do no-op;
 /* critical section */
 flag[i] = false;
 /* remainder section */
 until (false);

• Are the three Critical Section Requirements Met?

6.1 : PROCESS SYNCH. 6 REV. 4.0

HARDWARE APPROACHES:

• Disabling Interrupts:Works for the Uni Processor case only. WHY?

• Atomic test and set: Returns parameter and sets parameter to true
atomically.

 while (test_and_set (lock)) do no-op;

 /* critical section */

 lock = false;

Example of Assembler code:

 GET_LOCK: SET_BIT_AND_SKIP <bit_address>
 BRANCH GET_LOCK /* set failed */
 ------- /* set succeeded */

Must be careful if these approaches are to satisfy a bounded wait condition - must
use round robin - requires code built around the lock instructions.

Boolean waiting[[N];
int j; /* Takes on values from 0 to N - 1

*/
Boolean key;

while
{
waiting[i] = TRUE;
key = TRUE;
while(waiting[i] && key)

key = test_and_set(lock); /* Spin lock */
waiting[i] = FALSE;

CRITICAL SECTION

j = (i + 1) mod N;

while ((j != i) && (! waiting[j]))
j = (j + 1) mod N;

if (j == i)
lock = FALSE;

else
waiting[j] = FALSE;

REMAINDER SECTION
}

6.1 : PROCESS SYNCH. 7 REV. 4.0

CURRENT HARDWARE DILEMMAS:

• We first need to define, for multiprocessors: caches, shared memory (for
storage of lock variables), write through cache, write pipes.

• The last software solution we did (the one we thought was correct) fails utterly
on a cached multiprocessor.

Why? { Hint, is the write by one processor visible immediately to all other
processors?}

What changes must be made to the hardware for this program to work?

• Does the sequence below work on a cached multiprocessor?

Initially, location a contains A0 and location b contains B0.

a) Processor 1 writes data A1 to location a.

b) Processor 1 sets b to B1 indicating data at a is valid.

c) Processor 2 waits for b to take on value B1 and loops until that change
occurs.

d) Processor 2 reads the value from a.

What value is seen by Processor 2 when it reads a?

How must hardware be specified to guarantee the value seen?

6.1 : PROCESS SYNCH. 8 REV. 4.0

• We need to discuss:

Write Ordering The first write by a processor will be visible before the
second write is visible. This requires a write through
cache.

Sequential Consistency If Processor 1 writes to Location a "before"
Processor 2 writes to Location b, then a is visible to
ALL processors before b is. To do this requires NOT
caching shared data.

• The software solutions discussed earlier should be avoided since they require
write ordering and/or sequential consistency.

• Hardware test and set on a multiprocessor causes an explicit flush of the write
to main memory and the update of all other processor’s caches.

• This is cheap relative to avoiding cache for ALL shared data. Here only lock
locations are written out explicitly.

• In not too many years, hardware will no longer support software solutions
because of the performance impact of doing so.

6.1 : PROCESS SYNCH. 9 REV. 4.0

SEMAPHORES:

We want to be able to write more complex constructs and so need a language to
do so. We thus define semaphores which we assume are atomic operations:

 WAIT (S):
 while S <= 0 do no-op;

S = S - 1;

 SIGNAL (S):
 S = S + 1;

• As given here, these are not atomic as written in "macro code". We define
these operations, however, to be atomic (Protected by a hardware lock.)

FORMAT:

 wait (mutex); <-- Mutual exclusion: mutex init to 1.
 CRITICAL SECTION
 signal(mutex);
 REMAINDER

• These can be used to force synchronization (precedence) if the preceed-er
does a signal at the end, and the follower does wait at beginning. For example,
here we want P1 to execute before P2.

 P1: P2:
 statement 1; wait (synch);
 signal (synch); statement 2;

• We don’t want to loop on busy, so will suspend instead:

a) Block on semaphore == False,
b) Wakeup on signal (semaphore becomes True),
c) There may be numerous processes waiting for the semaphore, so keep a

list of blocked processes,
d) Wakeup one of the blocked processes upon getting a signal (choice of

who depends on strategy).

6.1 : PROCESS SYNCH. 10 REV. 4.0

To PREVENT looping, we redefine the semaphore operations as:

 type semaphore = record
 value: integer;
 L: list of process;
 end;

 wait(s):
 s.value = s.value - 1;
 if (s.value < 0)
 then begin
 add this process to s.L; /* linked list of PTBL waiting on
S */
 block;
 end;

 signal(s):
 s.value = s.value + 1;
 if (s.value <= 0)
 then begin
 remove a process P from s.L;
 wakeup(P); /* Make P ready to run */
 end;

• It’s critical that these be atomic - in uniprocessors we can disable interrupts,
but in multiprocessors other mechanisms for atomicity are needed.

• Popular incarnations of semaphores are as "event counts" and "lock
managers". (We’ll talk about these in a few minutes.)

DEADLOCKS:

• May occur when two or more processes try to get the same multiple
resources at the same time.

 P1: P2:
 wait(S); wait(Q);
 wait(Q); wait(S);

 signal(S); signal(Q);
 signal(Q); signal(S);

• How can this be fixed?

6.1 : PROCESS SYNCH. 11 REV. 4.0

SEQUENCERS AND EVENTCOUNTS:

Sequencer: A non-decreasing integer variable, initialized to 0, that can be
used to totally order events. (Philosophically similar to the take-a-
number machines in bakeries and other such places.) The
operation of getting the next sequential number is given by

 v = ticket(S);

 The next sequential number is returned as "v" from sequencer
"S".

Event Count: Is the stack of used sequence numbers. The top number on the
stack represents the customer currently being served.

AWAIT:

Eventcounts can be operated on as follows:

await(E, v);

Await on eventcount/stack "E" until all the previous numbers/customers have been
served. Wait until the sequence of numbers, or the eventcount, reaches the
number v and then wake up the process. More formally,

 await(E, v);
 if E .count < v then
 place the executing process in the waiting queue
 associated with E and invoke the CPU scheduler.
 endif;

6.1 : PROCESS SYNCH. 12 REV. 4.0

ADVANCE:

 Eventcounts can also be operated on as follows:

 advance(E);

This corresponds to the clerk completing service of a customer and moving on to
the next one. For a process, it causes that process to be awakened whose ticket
has now been reached. The operation is defined as:

 advance(E);
 E .count = E.count + 1;
 wake up the process(es) waiting for E’s value to
 reach the current value just attained;

READ:

Eventcounts can also be "read". This allows programs to find out how long it will be
before they are serviced.

current_count = read(E);

6.1 : PROCESS SYNCH. 13 REV. 4.0

THE PRODUCER CONSUMER PROBLEM USING EVENTCOUNTS:

/* Shared Variables */

 var Pticket, Cticket: sequencer;
 in, out: eventcount;
 buffer: array[0..N-1] of message;

 /* Parallel programs for producer and consumer are shown here*/

PRODUCER I

 var t: integer; /* Variable t is local to each producer.*/

 loop
 /*Create a new message m*/

 t:= ticket(Pticket); /*One producer at a time*/
 await(in, t);

 await(out, t - N + 1); /*Await an empty cell */
 buffer[t mod N] := m;

 advance(in); /* Signal full buffer: allow other producers.*/
 endloop

 CONSUMER J

 var u: integer; /* Variable u is local to each producer. */

 loop
 u:= ticket(Cticket); /*One consumer at a time*/
 await(out, u);

 await(in, u + 1); /*Await a message */
 m := buffer[u mod N];

 advance(out); /* Signal empty buffer: allow other consumers.*/
 /* Consume message m */
 ...
 endloop

• The use of two "awaits" allows concurrently one producer and one consumer.
A single await for each would have a shorter code path, but wouldn’t be
concurrent.

• The "in" eventcount assures only one producer at a time and guarantees a
buffer location has been filled before enabling a consumer.

