
1: OPERATING SYSTEMS: 1 Rev. 4.0
OVERVIEW & STRUCTURES

OPERATING SYSTEMS:
OVERVIEW AND STRUCTURES

WHAT IS AN OPERATING SYSTEM?

• An interface between users and hardware - an environment "architecture"

• Allows convenient usage; hides the tedious stuff

• Allows efficient usage; parallel activity, avoids wasted cycles

• Provides information protection

• Gives each user a slice of the resources

• Acts as a control program.

The Layers Of A System:

 USER (Human)

 V <---- Interface (Dependent on program)
 V

 APPLICATION PROGRAM (Compiler, editor, games ..)

 V <---- Interface (System calls) --- OS Interface -- API
 V

 OPERATING SYSTEM (Serves program requests)

 V <---- Interface (Hardware/privileged instructions)
 V

 HARDWARE (Disk, tape, memory, CPU)

 V
 V

1: OPERATING SYSTEMS: 2 Rev. 4.0
OVERVIEW & STRUCTURES

CHARACTERISTICS OF OPERATING SYSTEMS:

• A mechanism for scheduling jobs or processes. This was at one time called a
monitor. Scheduling can be as simple as running the next process, or it can
become relatively complicated.

• A method for simultaneous CPU execution and IO handling. Processing is going
on even as IO is occurring in preparation for future CPU work.

• Off Line Processing; not only are IO and CPU happening concurrently, but some
off-board processing is occurring with the IO.

• The CPU is wasted if a job waits for I/O. This leads to:

Multiprogramming (dynamic switching). While one job waits for a
resource, the CPU can find another job to run. It means that several jobs
are ready to run and only need the CPU in order to continue.

• CPU scheduling is the subject of Chapter 4.

• All of this leads to:

 memory management

 resource scheduling

 deadlock protection

 which are the subject of the rest of this course.

Other Characteristics include:

• Time Sharing - multiprogramming environment that’s also interactive.

• Multiprocessing - Tightly coupled systems that communicate via shared
memory. Used for scientific applications. Used for speed improvement by
putting together a number of off-the-shelf processors.

• Distributed Systems - Loosely coupled systems that communicate via
message passing. Advantages include resource sharing, speed up,
reliability, communication.

• Real Time Systems - Rapid response time is main characteristic. Used in
control of applications where rapid response to a stimulus is essential.

1: OPERATING SYSTEMS: 3 Rev. 4.0
OVERVIEW & STRUCTURES

HARDWARE SUPPORT FOR OPERATING SYSTEMS:

Interrupts - a device kicks the CPU in order to get service. The CPU no longer
needs to poll.

• Depend on interrupts to determine what is to be done next.

• Hardware and Software interrupts.

• Can sit and wait for an interrupt or run another user.

• The interrupt handler chooses the code to be run for a particular device.

• Device table gives the status for each device.
<<< SEE FIGURE 2.3 >>>

DMA (Direct Memory Access) I/O controllers have access to host memory, without
bothering the CPU.

STORAGE HIERARCHY:

Very fast storage is very expensive. So the Operating System manages a
hierarchy of storage devices in order to make the best use of resources. In fact,
considerable effort goes into this support.

<< Fast & Expensive >>

Registers
|

Cache
|

Main Memory
|

Electronic Disk
|

Magnetic Disk
|

Optical Disk
|

Magnetic Tapes

<< Slow & Inexpensive >>

1: OPERATING SYSTEMS: 4 Rev. 4.0
OVERVIEW & STRUCTURES

PROTECTION:

Protecting the Operating System and other users from errant users.

The User/Supervisor Mode and privileged instructions.

Concurrent jobs might interfere with others. This leads to protection of resources
by user/supervisor mode. These resources include:

I/O Define I/O instructions as privileged; they can be executed only in
Supervisor mode.

 System calls get us from user to supervisor mode.
 <<< SEE FIGURE 2.9>>>

Memory A user program can only access its own logical memory. For
instance, it can’t modify supervisor code.

 Depends on an address translation scheme.
<<< SEE FIGURE 2.8 >>> for simplistic example.

CPU A clock prevents programs from using all the CPU time. This clock
causes an interrupt that causes the operating system to gain control
from a user program.

For machines connected together, this protection must extend across:

• Shared resources

• Multiprocessor architectures

• Clustered Systems

The practice of this is called “distributed operating systems”.

