Operating Systems Introduction Outline

• Course Introduction
 – Administration
 – Major components
 • Homework
 • Research Paper Presentation
 • Exams
 • Project
 – Syllabus
• Operating Systems Background
 – Context of Operating Systems
 – Definitions of an Operating System
 – Historical Perspective
• Computer Organization and Operating Systems
Administration

- Professor Thomas Bressoud
 - Stratus Computer (Ascend)
 - (508) 490-6329
 - Tom_Bressoud@stratus.com

- Office Hours
 - Before class
 - By appointment
 - 24 hour email response

- Class Email List -- cs502w@cs.wpi.edu

- Web ReCourse
 - http://penguin.wpi.edu:4545

- Textbook
Course Components

• Homework
 – Two in the first half of the semester. 10% of grade.

• Research Paper Presentation
 – Select a current research paper in the operating systems field and read and understand it and present a short presentation summarizing the work and detailing some aspect of the work.

• Exams
 – A midterm on Oct. 27 and a final on Dec. 15. They count 20% and 30% of your grade respectively. Closed book. One handwritten note sheet permitted.

• The Project
 – Totals 25% of your grade. See next transparency.

• Class Participation
 – 5% of your grade
The CS 502 Project

• By the end of the semester you will write an operating system for the Z502 computer architecture. The Z502 is a hypothetical processor that is defined for you.
• You will be given a simulator for the Z502 and a suite of user programs to test your Operating System implementation.
• This is a *large* project, involving upwards of a couple thousand lines of code. You must start early to succeed.
• To encourage students to begin early, I will divide Phase 1 into a set of milestones that get turned in for “checkmark” credit. The first two of these milestones are due *next week*.
CS 502 Project (cont.)

- **What did you like about this course/lab?**
 - “The project was interesting and challenging. It is a good way to learn the inner workings of an operating system”
 - “The project was extremely well thought-out”
 - “Everything was pretty good, but the project was a lot of fun to work on”

- **What did you dislike about this course/lab?**
 - “Sometimes too much work to do”
 - “It took a lot of time to do the lab”
 - “Project very time consuming”

- **What strategy would you advise a friend?**
 - “Start working on project phases as early as possible”
 - “Start the project early!”
 - “Hire a full time maid to keep the house going …”
Overall Cautions

- Substantial time commitment
 - This is a major project class; students that try to take another class simply run out of time.
 - This burden is lessened if you start early.
- Substantial programming required in C (C++ possible)
 - This is not the time to learn C.
 - Students who have not built modular structures in C (I.e. have mostly built < 100 line programs) can get lost in the effort to program in the large.
- This is an *introduction* to operating systems
 - Considerable overlap with undergraduate OS courses
 - If you are had a CS undergraduate major and/or have taken a course on OS, then the implementation project may be the primary value-add for taking this course. See me.
For Next Week:

- **Milestone 1: Build a queue abstract data type (ADT).**
 - The assignment is as described for “Phase 0” in the project documentation. This is a very straightforward programming task. Focus on unit testing and clean modular design.
 - **URLS:**
 - http://www.cs.wpi.edu/~cs502/f98/Waltham/project/phase0.html

- **Milestone 2: Build the Z502 simulator**
 - Download the C source for the Z502 into your development environment and build it. For instructions, see the Student Manual
 - **Deliverables:**
 - Makefile or equivalent
 - Log of execution run with and without “sample” argument
What is an Operating System?

- Class provided definitions …
Where does the OS fit in?

- Basic Taxonomy

 - Hardware and Software combined to provide a tool to solve specific problems
 - Software is differentiated according to its purpose
 - System software provides a general environment where programmers/developers can create applications and users can run applications
 - To an end user, the operating system is overhead. What matters is the application.
Operating System Context

- The Operating System is the layer between the hardware and the application.
- It implements some desired functionality by building on the functionality in lower levels.
- Software in general transforms one interface into another interface.
- What are the interfaces in this picture?
Non-OS System Software
What does an Operating System Do?

- Objectives of an OS
 - Convenience
 - An operating system makes a computer more convenient to use.
 - Efficiency
 - An operating system allows the computer system resources to be used in an efficient manner.
 - Ability to Evolve
 - Should permit effective development, testing, and introduction of new system features and functions without interfering with service.

- Perspective-based OS Definition:
 - The OS is a manager of the computer system resources
 - The OS implements/manages virtual computers
Hardware Resources

- **Processor**
 - Component capable of executing instructions
- **Memory**
 - Contains all instructions and data used by a processor
 - Sometimes referred to as physical or primary memory
- **Disk Devices**
 - Long term storage of data
- **I/O Controllers**
 - Processors that are able to transfer data between memory and devices
 - Video, Terminal, Network, Mouse, Tape Drives, etc.
The Functions of Resource Management

- **Transformation**
 - Hardware resources have complex interfaces
 - Operating system transforms physical resources into virtual resources that provide similar functionality to their physical counterpart, but have a simper interface.

- **Multiplexing**
 - Provide the sharing of physical resources among multiple users
 - Time division multiplexing
 - Exclusive use at different points in time
 - Appropriate when the resource cannot be divided into smaller versions of itself.
 - Space division multiplexing
 - A resource is divided into smaller versions of itself and each app/user is given its own part of the resource.
Resource Management (Cont.)

• Scheduling
 – Deciding which users should be allocated what resources and when they should get it.
 – Includes allocation and security/protection.
The OS as implementor of Virtual Computers

- The operating system creates software copies of the processor (the capability to execute instructions) and the memory (the capability to store information. Each constitutes a Virtual Computer (VC).
- Also transforms the devices into more abstract and easily used devices. In this way, it is building an extended machine.
The Virtual Computer

- The Virtual Processor
 - Nearly the same interface to the user as the physical processor (i.e. nearly the same instructions) for efficiency.
 - Removes some of the physical processor instructions and adds some other “instructions” (operations).
 - Instructions are removed by making them privileged
 - Added operations are system calls. These allow the virtual processor to request virtual resources from the operating system:
 - Create new virtual computers
 - Communicate with other virtual computers
 - Allocate storage as needed
 - Perform I/O
 - Access persistent storage through file system model
 - Shares the physical processor through time multiplexing
The Virtual Computer (Cont.)

- Virtual Primary Memory
 - Create the illusion of memory similar to hardware memory.
 - Start at 0 and addressable in bytes, load and store in words.
 - Shared via a combination of time multiplex and space multiplex of physical memory and space multiplex of secondary storage.

- Virtual Persistent Storage
 - File System
 - Shared via space multiplex

- Virtual I/O controllers and communications devices
 - Generally time multiplex most other devices.