Disk I/O

Major/Minor Device Numbers

All special files have a major device number and a minor device number.

- Major Device Number—specifies the device class, floppy disk, hard disk, terminal (selects device driver)
- Minor Device Number—specifies specific device within the class. Is passed as a parameter to the device driver. Which disk, which terminal.

Look at specific device drivers in some detail.

RAM Disks

Store blocks of data in preallocated memory rather than on physical disk. Why?

- fast access
- always available
- volatile (goes away)

RAM Disk Driver

Map kernel data to file system. Example is $/ \verb"proc"$ in Linux, which allows access of process information.

Also Unix RAM disk devices:

- 0: /dev/mem—read memory contents
- 1: /dev/kmem—read kernel memory contents (used by system commands). One question is who can look at the memory contents. Varies between machines.
- 2: /dev/null—a bottomless pit, accepts input and throws it away. cat /etc/motd > /dev/null.

Setup of CCC machine

< cpu /home/cew 1 >1s -1 /dev/kmem cr--r----1 root news 2, 1 Jul 18 2000 /dev/kmem < cpu /home/cew 2 >1s -1 /dev/mem cr--r----1 root 2, 0 Jul 18 2000 /dev/mem news < cpu /home/cew 3 >1s -1 /dev/null crw-rw-rw-1 root wheel 2, 2 Nov 3 17:00 /dev/null < cpu /home/cew 4 >ls -l /bin/ps -rws--x--x 1 root tty 73728 May 14 2000 /bin/ps* < cpu /home/cew 5 >ls -l /usr/ucb/uptime -rws--x--x 2 root 303104 May 14 2000 /usr/ucb/uptime* tty

Disks

Look at hardware picture for a hard disk drive. Disk organization:

- organized into *cylinders*
- each level of the cylinder is a track
- tracks are divided into *sectors* More space for sectors towards outer rim.
- Newer disks are divided into *zones* with more sectors on outer
- magnetic storage devices (*read-write head* changes or senses the magnetic coating)
- *arm* moves the read-write head(s)
- $\bullet\,$ disk heads do not normally touch the surface. Mechanical shock or dust particles can cause contact and a head crash.

Disk controller hides details of disk geometry from operating system by presenting view of x cylinders, y heads (tracks) and z sectors per track.

Look at Fig 5-17 for comparison of disk parameters.

Why use disk storage?

- storage capacity is larger
- disk storage is less expensive
- it is permanent, long-term storage (nonvolatile)

Disk Head Scheduling

Disk access time = seek time + latency time (rotational delay) + transmission time.

Typical delays:

- seek time: $m \cdot n + s$ when there are n tracks, m is a constant (0.3 msec on PC disk, 0.1 msec on larger disks) and s is start-up time (20 msec on PC disk, 3 msec on larger disk).
- rotational delay: most disks: 3600 rpm for a revolution of 16.7 msec, hence an average of 8.3 msec. Floppy disks rotate 300-600 rpm for an average delay of 100-200 msec.

Want to minimize disk access time. One technique is interleaving so the next sector will be available for transfer when the previous is complete.

See Fig 5-26.

Because the CPU can generate disk requests much faster than the hardware can service them, several requests may be queued at any given time. The use of *disk-head scheduling policies* can improve performance by minimizing the seek time.

FCFS

A first come first served (FCFS) policy is the simplest to implement:

- it is fair
- results in a seek for almost every operation
- works well under light load, but saturates quickly under heavy load

\mathbf{SSF}

Alternatively, we can use the shortest seek latency first (SSF) policy:

- of all outstanding requests, schedule the one requiring the shortest seek
- while minimizing seek time, it is unfair
- leads to high delay variance

Elevator (Scan)

Look at elevators in a tall building. Same problem.

As a compromise, the *elevator* policy sweeps the head from one side of the disk to the other, servicing requests as the head passes over the relevant cylinder:

- the delay is bounded to be no longer than two sweeps
- optimization: sweep only as far as needed, reversing direction in the absence of further requests in the current direction
- optimization: (C-Scan) sweep in only one direction, to reduce variance

Disk Cache

Disk driver or controller may have a track cache to speed up access.

Independently disk driver maintains a cache of disk blocks in memory.

Error Handling

Errors and what to do:

- programming error (request for nonexistent sector)—trap and return an error
- transient checksum error (dust on head)—retry
- permanent checksum error (disk block physically damaged)—include block as part of a special "damaged" block file that is never accessed. If no reads of this special file the block is never accessed. Backup could be done a track at a time, which causes problems. Also maintain a few free tracks to substitute for tracks with bad sectors.
- seek error (arm in wrong place)—recalibrate the arm
- controller error—must reset itself