
Memory ManagementIn multiprogramming systems, pro
esses share a 
ommon store. Pro
esses need spa
e for(see Figure 11.11 Nutt):� 
ode (instru
tions)� stati
 data (
ompiler initialized variables, strings, et
.)� global data (global variables, uninitialized)� sta
k (lo
al variables)� heap (new, mallo
)Memory management is 
ompli
ated by:� unbounded demand | pro
esses may require more than the total physi
al storage ofthe ma
hine� prote
tion vs. sharing1. some parts of memory allo
ated to one pro
ess must be prote
ted from another2. some memory 
an be shared among pro
esses for better resour
e utilization(spa
e and time)� dynami
 memory requirements | sta
ks and heap grow and shrink dynami
ally. Theoperating system may need to take memory from one pro
ess to give to anotherStorage is organized into a hierar
hy. In general, the faster the a

ess, the more expensivethe store. See Figure 3.1 Finkel, 11.3 Nutt.� pun
h 
ards� magneti
 tape� magneti
 disk� main store� registers� on 
hip 
a
he
CS 502 1 week4-memmgt.tex



Ca
he Prin
ipleCa
he Prin
iple: the more frequently data are a

essed, the faster the a

ess should be.Goal of 
a
hing: keep frequently a

essed items in higher levels of hierar
hy, less frequentlya

essed items in lower levels.A 
a
he is a data repository that 
an be a

essed qui
kly.An ar
hive is a data repository from whi
h a

ess is slower.Ca
he ExampleA 
a
he hit refers to a data referen
e that 
an be satis�ed from the 
a
he, while a 
a
hemiss refers to a data a

ess that must be fet
hed from the ar
hive.In many 
ases, 
a
hing signi�
antly improves performan
e. For example: Assume two levelhierar
hy having an a

ess time of 50 ns and 500 ns respe
tively. With a 
a
he hit rate of95% (and miss rate of 5%):a

ess time = :95X50ns+ :05X500ns = 72:50nsNote: moving data from one level of the hierar
hy to another is relatively expensive. Thehysteresis prin
iple implies that data should be left in one pla
e at least long enough to payba
k the expense.ThrashingViolating the hysteresis prin
iple leads to thrashing, a 
ondition in whi
h the CPU spendsmost of its time moving data between di�erent levels of storage and little of its timeperforming useful work.

CS 502 2 week4-memmgt.tex



No Swapping or PagingLook at Fig 4.1Can only exe
ute one program at a time. What is the CPU doing while I/O a
tivity isgoing on? It's waiting idle! Thus multiprogramming is good (Tanenbaum makes anextended argument to this e�e
t).Generi
 Memory ManagementRather than �x the partitions allow them to be swapped in and out of memory. Fig 4.5, 4.6.Leads to question of how to manage memory, whi
h is the same problem for managingheap spa
e.Problem: managing a 
ontiguous 
hunk of memory. Memory manager must support:� ptr = getmem(size) | get size bytes of 
ontiguous memory, new, mallo
().� freemem(ptr) | return a 
hunk of memory (previously a
quired via getmem) to thefree pool, delete, free().The storage manager must keep tra
k of whi
h pie
es of physi
al store are in use and whi
hare free. Possibilities:Bit Mapbit map | Divide memory into �xed size 
hunks, with one bit (used/unused) devoted toea
h 
hunk.Disadvantages:� getmem requests are rounded up to a multiple of the blo
k size; internalfragmentation results� tradeo� between size of 
hunks and size of bit map.
CS 502 3 week4-memmgt.tex



Boundary Tag (Linked Lists)boundary-tag | keep doubly linked list of all pie
es of memory. Reserved �elds asso
iatedwith ea
h pie
e indi
ate:� status of pie
e (used or unused)� start and end of pie
eGetmem sear
hes the list for a pie
e of adequate size. If an exa
t size mat
h 
annot befound, a large pie
e is split into two smaller pie
es, one returned to the user, the otherreturned to the free list.Freemem 
ombines adja
ent pie
es into a single larger pie
e. See Fig 4-8.When servi
ing a getmem request, whi
h pie
e should be 
hosen?� �rst �t | �nd the �rst pie
e that is large enough, split it in two, return one pie
e touser, other to free list� best �t | �nd smallest pie
e that satis�es request, split it in two.Intuitively, best �t would appear better. In reality: best �t leaves many tiny pie
es toosmall to use.Next Fit : Variation on �rst �t: rather than starting sear
h at beginning of list, start whereprevious sear
h ended. The former tends to in
rease sear
h time be
ause small pie
esreside near start of list.Qui
k Fit : keep a list sorted by 
ommonly requested sizes. However merging returnedspa
e is more expensive.

CS 502 4 week4-memmgt.tex



Buddy SystemSomewhat like boundary tag, but segment are broken into �xed sizes. See Figure 10.18.Wasted Spa
e� external fragmentation | wasted spa
e outside of any pro
ess. (e.g., small pie
es inbest �t)Can analyze how mu
h spa
e is lost to external fragmentation. 50% rule indi
ateshalf as many holes as allo
ations. Can also determine the amount of unused memory.Compa
tion may help: move 
hunks around (within physi
al memory) in order to
ombine unused pie
es into larger pie
e. However:{ 
ompa
tion expensive{ 
an only be used in virtual memory systems that bind virtual addresses tophysi
al addresses at a

ess time� internal fragmentation | spa
e allo
ated to a pro
ess that is not used (e.g., if bitmaps are used, getmem requests are rounded up to a multiple of the 
hunk size)� overhead spa
e | spa
e lost to memory management data stru
tures (e.g., bit maps,reserved �elds in boundary-tag)

CS 502 5 week4-memmgt.tex


