
Memory ManagementIn multiprogramming systems, proesses share a ommon store. Proesses need spae for(see Figure 11.11 Nutt):� ode (instrutions)� stati data (ompiler initialized variables, strings, et.)� global data (global variables, uninitialized)� stak (loal variables)� heap (new, mallo)Memory management is ompliated by:� unbounded demand | proesses may require more than the total physial storage ofthe mahine� protetion vs. sharing1. some parts of memory alloated to one proess must be proteted from another2. some memory an be shared among proesses for better resoure utilization(spae and time)� dynami memory requirements | staks and heap grow and shrink dynamially. Theoperating system may need to take memory from one proess to give to anotherStorage is organized into a hierarhy. In general, the faster the aess, the more expensivethe store. See Figure 3.1 Finkel, 11.3 Nutt.� punh ards� magneti tape� magneti disk� main store� registers� on hip ahe
CS 502 1 week4-memmgt.tex

Cahe PrinipleCahe Priniple: the more frequently data are aessed, the faster the aess should be.Goal of ahing: keep frequently aessed items in higher levels of hierarhy, less frequentlyaessed items in lower levels.A ahe is a data repository that an be aessed quikly.An arhive is a data repository from whih aess is slower.Cahe ExampleA ahe hit refers to a data referene that an be satis�ed from the ahe, while a ahemiss refers to a data aess that must be fethed from the arhive.In many ases, ahing signi�antly improves performane. For example: Assume two levelhierarhy having an aess time of 50 ns and 500 ns respetively. With a ahe hit rate of95% (and miss rate of 5%):aess time = :95X50ns+ :05X500ns = 72:50nsNote: moving data from one level of the hierarhy to another is relatively expensive. Thehysteresis priniple implies that data should be left in one plae at least long enough to paybak the expense.ThrashingViolating the hysteresis priniple leads to thrashing, a ondition in whih the CPU spendsmost of its time moving data between di�erent levels of storage and little of its timeperforming useful work.

CS 502 2 week4-memmgt.tex

No Swapping or PagingLook at Fig 4.1Can only exeute one program at a time. What is the CPU doing while I/O ativity isgoing on? It's waiting idle! Thus multiprogramming is good (Tanenbaum makes anextended argument to this e�et).Generi Memory ManagementRather than �x the partitions allow them to be swapped in and out of memory. Fig 4.5, 4.6.Leads to question of how to manage memory, whih is the same problem for managingheap spae.Problem: managing a ontiguous hunk of memory. Memory manager must support:� ptr = getmem(size) | get size bytes of ontiguous memory, new, mallo().� freemem(ptr) | return a hunk of memory (previously aquired via getmem) to thefree pool, delete, free().The storage manager must keep trak of whih piees of physial store are in use and whihare free. Possibilities:Bit Mapbit map | Divide memory into �xed size hunks, with one bit (used/unused) devoted toeah hunk.Disadvantages:� getmem requests are rounded up to a multiple of the blok size; internalfragmentation results� tradeo� between size of hunks and size of bit map.
CS 502 3 week4-memmgt.tex

Boundary Tag (Linked Lists)boundary-tag | keep doubly linked list of all piees of memory. Reserved �elds assoiatedwith eah piee indiate:� status of piee (used or unused)� start and end of pieeGetmem searhes the list for a piee of adequate size. If an exat size math annot befound, a large piee is split into two smaller piees, one returned to the user, the otherreturned to the free list.Freemem ombines adjaent piees into a single larger piee. See Fig 4-8.When serviing a getmem request, whih piee should be hosen?� �rst �t | �nd the �rst piee that is large enough, split it in two, return one piee touser, other to free list� best �t | �nd smallest piee that satis�es request, split it in two.Intuitively, best �t would appear better. In reality: best �t leaves many tiny piees toosmall to use.Next Fit : Variation on �rst �t: rather than starting searh at beginning of list, start whereprevious searh ended. The former tends to inrease searh time beause small pieesreside near start of list.Quik Fit : keep a list sorted by ommonly requested sizes. However merging returnedspae is more expensive.

CS 502 4 week4-memmgt.tex

Buddy SystemSomewhat like boundary tag, but segment are broken into �xed sizes. See Figure 10.18.Wasted Spae� external fragmentation | wasted spae outside of any proess. (e.g., small piees inbest �t)Can analyze how muh spae is lost to external fragmentation. 50% rule indiateshalf as many holes as alloations. Can also determine the amount of unused memory.Compation may help: move hunks around (within physial memory) in order toombine unused piees into larger piee. However:{ ompation expensive{ an only be used in virtual memory systems that bind virtual addresses tophysial addresses at aess time� internal fragmentation | spae alloated to a proess that is not used (e.g., if bitmaps are used, getmem requests are rounded up to a multiple of the hunk size)� overhead spae | spae lost to memory management data strutures (e.g., bit maps,reserved �elds in boundary-tag)

CS 502 5 week4-memmgt.tex

