
S
heduling Poli
iesTypes of pro
esses:� intera
tive jobs� low priority,
pu bound jobs that use ex
ess pro
essor
apa
ity (e.g.,
al
ulating � to101000000 de
imal pla
es)� somewhere in betweenWe will
on
entrate on s
heduling at the level of sele
ting among a set of ready pro
esses.S
heduler is invoked whenever the operating system must sele
t a user-level pro
ess toexe
ute:� after pro
ess
reation/termination� a pro
ess blo
ks on I/O� I/O interrupt o

urs�
lo
k interrupt o

urs (if preemptive)Distinguish between a short and long pro
ess. Based on the time a pro
ess runs when itgets the CPU. An I/O bound pro
ess is short and a CPU bound pro
ess is long.Note; The idea of short vs. long is determined by how mu
h of its time sli
e that a pro
essuses, not the total amount of time it exe
utes.

CS 502 1 week3-s
hed.tex

CriteriaCriteria for a good s
heduling algorithm:� fairness: all pro
esses get fair share of the CPU� eÆ
ien
y: keep CPU busy 100% of time� response time: minimize response time� turnaround: minimize the time bat
h users must wait for output� throughput: maximize number of jobs per hourThey are
ompeting. Fairness/eÆ
ien
y, intera
tive/bat
hLook at Figure 2-38 for goals/
riteria under di�erent situations.

CS 502 2 week3-s
hed.tex

MeasurementsIn order to
ompare di�erent short-term poli
ies, we need a measure of performan
e.Assume that a pro
ess needs t time in exe
ution before it leaves the ready list:exe
ution time (t) | exe
ution timeresponse time (T) | �nish time - arrival time. (wall
lo
k time)missed time (M) | T - t; time spend on the ready list or in blo
ked state.penalty ratio (P) | T/t; penalty of 1 ideal (lower penalty is good)response ratio (R) | t/T; response of 1 ideal (higher response is good)Other useful measures:� kernel time | amount of time the spent by the kernel in making poli
y de
isions and
arrying them out. Context swit
hing. A well tuned O.S. uses between 10-30%.� system time | kernel time devoted to a pro
ess.� Idle time | amount of time spend when the ready list is empty. Thus running aNULL pro
ess or running NULL routine
ode.

CS 502 3 week3-s
hed.tex

First Come, First served (FCFS)Also
alled FIFO. CPU servi
es pro
esses in the order they arrive. Pro
esses run until theygive up the CPU. If the poli
y is non-preemptive, a pro
ess is never blo
ked until itvoluntarily gives up the CPU.Non-preemptive poli
ies resist
hange.Advantages:� easy to implement� eÆ
ient|minimize
ontext swit
hingDisadvantages:� Penalty ratio for short jobs mu
h greater than for long jobs� favors
omputation intensive tasks over intera
tive tasks� no way to break out of an in�nite loop

CS 502 4 week3-s
hed.tex

Round Robin (RR)CPU servi
es a pro
ess for only a single quantum of time, q, before moving on to the nextpro
ess. A quantum is usually 1/60 to 1 se
ond.The quantum q a
ts as a parameter that
an be tuned. Long quantums result in FCFS.Short quantums result in an approximation of pro
essor sharing, in whi
h every pro
essthinks it is getting
onstant servi
e from a pro
essor that is slower proportionally to thenumber of pro
esses.RR a
hieves a good penalty ratio by preempting pro
esses that are monopolizing the CPU.Is there a limit as to how small
an we make the quantum value?Note: we always start the job with a full time quantum, regardless of how long it took ofthe last quantum.

CS 502 5 week3-s
hed.tex

Shortest Pro
ess Next (SPN)Also
alled Shortest Job First (SPF).Preemption is relatively expensive. SPN attempts to avoid that
ost.The SPN poli
y always tries to sele
t the shortest job for servi
ing.Of
ourse, we
an't know absolutely how long a job will take! However, its re
ent behavioris likely to be a good approximation. For instan
e, one might
ompute an exponentialaverage: Esmooth = �Esmooth + (1� �)EmeasuredEmeasured is how long a pro
ess runs when it gets a
han
e.� is
alled the smoothing (aging) fa
tor and may be set higher or lower to make theestimate less or more responsive to
hange.� when � is 0, we use only the re
ent value� when � is .8, we treat the new value suspi
iously | it may be only a temporary
u
tuation.Unfortunately, SPN may lead to starvation, a
ondition where some pro
esses are neverservi
ed.In Unix, the
ommand uptime uses an exponential de
ay to
ompute the average number ofjobs in the run queue over the last 1, 5, and 15 minutes. For example:% uptime1:02pm up 18 days, 2:02, 4 users,load average: 0.48, 0.26, 0.03%

CS 502 6 week3-s
hed.tex

Preemptive Shortest Pro
ess Next (PSPN)Combine preemption of round robin (RR) with shortest pro
ess next (SPN).PSPN preempts the
urrent pro
ess when another pro
ess is available with a total servi
erequirement less than the remaining servi
e time required by the
urrent pro
ess.Multiple-level Feedba
k (FB)Maintain multiple queues, with lower numbered queues having highest priority. When apro
ess has used a
ertain quanta in its queue, the s
heduler moves it to another queue.Use Round Robin poli
y within ea
h queue to sele
t a pro
ess of the highest priority.Look at Fig. 2-42.Intera
tive pro
esses have priority over longer ones, be
ause long pro
ess migrate to lowerpriority queues. Give larger quanta to lower-priority.Side note: CTSS system 1962, Poli
y that swit
hed from CPU to intera
tive bound. Usersfound that it helped priority for long jobs to give keystrokes! Primitive way to dete
t I/Obound jobs.

CS 502 7 week3-s
hed.tex

Other Poli
ies� Lottery S
heduling|
han
e of a ready pro
ess being s
heduled is in proportion tothe number of lottery ti
kets held. Can allo
ate resour
es more a

urately.Cooperating pro
esses
an pool ti
kets.� Fair-Share S
heduling amongst users rather than pro
esses. Similar issue for allthreads of a pro
ess.� Real-Time S
heduling|deadlines hard and soft.

CS 502 8 week3-s
hed.tex

Linux Pro
ess S
hedulingTwo
lasses of pro
esses:� real-time (soft deadlines)� normalAlways run real-time pro
esses above normal. It uses priorities with either a FIFO orround-robin poli
y.Normal pro
ess s
heduling uses a prioritized, preemptive,
redit-based poli
y:� S
heduler always
hooses pro
ess with the most
redits to run.� On ea
h timer interrupt one
redit is dedu
ted until zero is rea
hed at whi
h time thepro
ess is preempted.� If no runnable pro
esses have any
redits then for every pro
ess re
redit as
redits =
redits/2 + priority.� This approa
h favors I/O bound pro
esses whi
h do not use up their
redits whenthey run.Windows NT/2000/XP S
hedulingWindows NT/2000/XP uses threads as the basi
 s
heduling unit. Threads have prioritiesand
an be preempted (not always true for threads).

CS 502 9 week3-s
hed.tex

Evaluating Poli
iesMathemati
al Analysis involves a mathemati
al formulation of the poli
y and a derivationof its behavior.Queueing networks model the system as a set of queues to servers (e.g. CPU, I/O devi
es,et
.).1. ea
h server has an average servi
e time2. pro
esses move from one queue to another a

ording to probabilities that des
ribethe breakdown of time spent at ea
h serverThe primary drawba
k of mathemati
al analysis is that the model is only anapproximation to the a
tual system, and
omplex systems are often impossible to solve.Simulation involves tra
king a large number of pro
esses through a model and
olle
tingstatisti
s.Pro
ess exe
ution
an be driven by probabilities (as in mathemati
al analysis) or by a
tualtra
e data.Experimentation is the \best" method, be
ause it measures the real system. Unfortunately,be
ause the system tested must be built, experimentation is usually expensive.

CS 502 10 week3-s
hed.tex

Guidelines� Rule of thumb: preemption is worth extra swit
hing
osts. Clo
k devi
es are prettymu
h universal|not mu
h more time to make a de
ision on an interrupt.� Use large enough quantum to keep kernel time down. Example: pro
ess swit
h 500us, quantum 10 ms, 5% s
heduling
ost. Want quantum small enough so the\intera
tive" does not \see" time sli
ing.� ease of implementation|FCFS, RR easy� must also
onsider spa
e used by pro
ess|more spa
e bigger quantum� intera
tive|give priority. UNIX gives priority to pro
esses with a high idletime/CPU ratio.� want quantum as big as possible while still not
ausing noti
able response problems.

CS 502 11 week3-s
hed.tex

