
Mutual Ex
lusion using MonitorsSome programming languages, su
h as Con
urrent Pas
al, Modula-2 and Java providemutual ex
lusion fa
ilities 
alled monitors.They are similar to modules in languages that provide abstra
t data types in that:� programmer de�nes a set of data types and pro
edures that 
an manipulate the data.� pro
edures 
an be exported to other modules, whi
h may import them.� system invokes initialization routine before exe
ution begins.Monitors di�er in that they support guard pro
edures. Java programmers 
an use thekeyword syn
hronized to indi
ate methods of a 
lass where only one method 
an exe
ute ata time.Guard pro
edures (syn
hronized methods) have the property that:� only one pro
ess 
an exe
ute a guard pro
edure at a time.� When a pro
ess invokes a guard pro
edure, its exe
ution is delayed until no otherpro
esses are exe
uting a guard pro
edure (important)

CS 502 1 week3-monitor.tex



Monitor Example with Java ClassLook at Java 
lass where the keyword syn
hronized is used to indi
ate a \guard"pro
edure.publi
 
lass A

ount {private int balan
e;publi
 A

ount() {balan
e = 0; // initialize balan
e to zero}// use syn
hronized to prohibit 
on
urrent a

ess of balan
epubli
 syn
hronized void Deposit(int deposit) {int newbalan
e; // lo
al variablenewbalan
e = balan
e + deposit;balan
e = newbalan
e;}publi
 syn
hronized int GetBalan
e() {return balan
e; // return 
urrent balan
e}}Monitors are a higher-level, making parallel programming less-error prone than withsemaphores.Note, however, that they are implemented using a lower level fa
ility provided by thehardware or operating system (su
h as semaphores).

CS 502 2 week3-monitor.tex



Syn
hronization using MonitorsAs des
ribed above, monitors solve the mutual ex
lusion problem. Monitors use 
onditionsto solve the syn
hronization problem:� new variable type 
alled 
ondition� wait(
ondition) | blo
ks the 
urrent pro
ess until another pro
ess signals the
ondition� signal(
ondition) | unblo
ks exa
tly one waiting pro
ess (does nothing if nopro
esses are waiting)Look at Fig. 2-27 as an example. Java provides wait(), notify(), and notifyAll(). However,Java only uses a single 
ondition. Look at an example later.Like semaphores, but no 
ounters and do not a

umulate signals. Must use own 
ountersto keep tra
k of states.Problem:� when does the blo
ked pro
ess 
ontinue?� if immediately, we violate the invariant that only one pro
ess may exe
ute a guard atany one time.� if later, the 
ondition being waiting on may no longer holdPre
ise de�nitions vary in the literature. One solution:� Suspend the signaling pro
ess.� Pro
ess that issues a signal immediately exits the monitor. (Justi�
ation: mostsignals o

ur at end of guard anyway)

CS 502 3 week3-monitor.tex



Other primitives: event 
ounters, sequen
ers, path expressionsMessage PassingSystem 
alls for dire
t message passing between pro
essessend(destpid, &message)re
eive(sr
pid, &message). sr
pid 
an be ANY to re
eive from any destination.Can also use indire
t message passing where messages are sent to mailboxes or ports.Design issues:� bu�ering messages (mailbox) | allowed? how big?� blo
king or non-blo
king operations. What to do if there is no bu�er spa
e on send.What to do if there is no message available on re
eive.� Rendezvous? does the sender blo
k until the re
eiver re
eives? Minix-style.� �xed or variable sized messages� syn
hronous vs. asyn
hronous re
eption. Only on re
eive or 
an a message handlerbe de�ned.Look at Fig. 2-29.BarriersMultiple pro
esses must syn
hronize before pro
eeding.Look at Fig. 2-30.

CS 502 4 week3-monitor.tex



SummaryEquivalen
e of primitives. Can build a message passing system on top of semaphores andshared memory.Talked about:� mutual ex
lusion|two a
tivities 
ompeting for shared resour
e.� syn
hronization|a
tivity waiting on a 
ondition (one pro
ess waiting on another's
ompletion).� hybrid s
hemes|using both mutual ex
lusion and syn
hronization.Produ
er/Consumer problem with multiple produ
ers and large bu�er. Or 
omplexlo
ks using both spin lo
ks and blo
king if will wait too long.� Methods|hardware te
hniques (interrupts) to operating system 
onstru
ts(semaphores) to programming-language 
onstru
ts (monitors).� Fa
ilities available|what language the operating system is written in, what fa
ilitiesare o�ered by the operating system.Want to avoid ra
e 
onditions|timing dependent out
omes!

CS 502 5 week3-monitor.tex


