Mutual Exclusion using Monitors

Some programming languages, such as Concurrent Pascal, Modula-2 and Java provide
mutual exclusion facilities called monitors.

They are similar to modules in languages that provide abstract data types in that:

e programmer defines a set of data types and procedures that can manipulate the data.
e procedures can be exported to other modules, which may import them.
e system invokes initialization routine before execution begins.

Monitors differ in that they support guard procedures. Java programmers can use the

keyword synchronized to indicate methods of a class where only one method can execute at
a time.

Guard procedures (synchronized methods) have the property that:

e only one process can execute a guard procedure at a time.

e When a process invokes a guard procedure, its execution is delayed until no other
processes are executing a guard procedure (important)

CS 502 1 week3-monitor.tex

Monitor Example with Java Class

Look at Java class where the keyword synchronized is used to indicate a “guard”
procedure.

public class Account {
private int balance;

public Account() {
balance = 0; // initialize balance to zero

}

// use synchronized to prohibit concurrent access of balance
public synchronized void Deposit(int deposit) {
int newbalance; // local variable

newbalance = balance + deposit;
balance = newbalance;

public synchronized int GetBalance() {
return balance; // return current balance

}

Monitors are a higher-level, making parallel programming less-error prone than with
semaphores.

Note, however, that they are implemented using a lower level facility provided by the
hardware or operating system (such as semaphores).

CS 502 2 week3-monitor.tex

Synchronization using Monitors

As described above, monitors solve the mutual exclusion problem. Monitors use conditions
to solve the synchronization problem:
e new variable type called condition

e wait(condition) — blocks the current process until another process signals the
condition

e signal(condition) — unblocks exactly one waiting process (does nothing if no

processes are waiting)

Look at Fig. 2-27 as an example. Java provides wait(), notify(), and notifyAll(). However,
Java only uses a single condition. Look at an example later.

Like semaphores, but no counters and do not accumulate signals. Must use own counters
to keep track of states.

Problem:

e when does the blocked process continue?

e if immediately, we violate the invariant that only one process may execute a guard at
any one time.

e if later, the condition being waiting on may no longer hold

Precise definitions vary in the literature. One solution:
e Suspend the signaling process.

e Process that issues a signal immediately exits the monitor. (Justification: most
signals occur at end of guard anyway)

CS 502 3 week3-monitor.tex

Other primitives: event counters, sequencers, path expressions

Message Passing

System calls for direct message passing between processes

send(destpid, &message)

receive(srcpid, &message). srcpid can be ANY to receive from any destination.
Can also use indirect message passing where messages are sent to mailbozres or ports.

Design issues:

e buffering messages (mailbox) allowed? how big?

blocking or non-blocking operations. What to do if there is no buffer space on send.
What to do if there is no message available on receive.

Rendezvous? does the sender block until the receiver receives? Minix-style.

e fixed or variable sized messages

synchronous vs. asynchronous reception. Only on receive or can a message handler

be defined.

Look at Fig. 2-29.

Barriers

Multiple processes must synchronize before proceeding.

Look at Fig. 2-30.

CS 502 4 week3-monitor.tex

Summary

Equivalence of primitives. Can build a message passing system on top of semaphores and
shared memory.

Talked about:

e mutual exclusion two activities competing for shared resource.

e synchronization—activity waiting on a condition (one process waiting on another’s
completion).

e hybrid schemes—using both mutual exclusion and synchronization.
Producer/Consumer problem with multiple producers and large buffer. Or complex
locks using both spin locks and blocking if will wait too long.

e Methods—hardware techniques (interrupts) to operating system constructs
(semaphores) to programming-language constructs (monitors).

e Facilities available—what language the operating system is written in, what facilities
are offered by the operating system.

Want to avoid race conditions timing dependent outcomes!

CS 502 5] week3-monitor.tex

