
Operating System DesignChp 12, TanenbaumGood systems (not just operating) have lear goals. Tanenbaum notes for general purposeoperating systems:1. de�ne abstrations2. provide primitive operations3. ensure isolation4. manage the hardwareWhy OS design is hard:1. extremely large programs (Windows 2000 with 29 million lines of ode)2. must deal with onurreny3. potential hostile users|protetion4. want to be able to share5. last a long time, don't die o� so easily6. designers don't have a lear idea how systems will be used7. portability to run with lots of hardware platforms8. need for bakward ompatibility

CS 502 1 week11-design.tex

Interfae DesignPriniple 1: simpliity"Perfetion is reahed not when there is no longer anything to add, but when there is nolonger anything to take away." (Antoine de St. Exupery)Priniple 2: CompletenessOS should do what is needed of it, but no more.|minimum of mehanism and maximum of larityTanenbaum ites Minix and Amoeba as have just send/reeive primitives (but then all thehard work is somewhere else!).Priniple 3: EÆienyosts of system alls should be intuitive

CS 502 2 week11-design.tex

ParadigmsWhat model do users of the system see:arhitetural oherene|do features hang together?user interfae paradigms|need onsisteny among appliationsexeution paradigms|algorithmi vs. event-driven ode (threads vs. event-driven)data paradigm|everything is a:magneti tape|FORTRAN�le|Unixobjet|Windowsdoument|WebSystem Call Interfaeminimize system alls, easier if a unifying data paradigmTanenbaum's �rst law of software|"Adding more ode adds more bugs."Lamport: "Don't hide power"

CS 502 3 week11-design.tex

ImplementationSystem struture:layeredexokernels (push OS funtions to be libraries for appliations)lient-serverMehanism vs. poliy (as disussed in Intro). Implement mehanism suh that the poliyan be exible.Orthogonality|ability to ombine separate onepts (fork and exe of Unix)Naming|generally a high-level user visible name and a low-level (ugly) system name.Binding Time|early vs. late. When is a deision made? EÆieny vs. exibility.Stati vs. Dynami strutures|delare at ompile time or alloate at run time. AgaineÆieny vs. exibility.Useful Tehniqueshide hardware details: for example onvert interrupts into thread invoationsonditional ompilation for hardware detailsuse indiretion to solve problems|more exibility, less eÆieny.resuability|software engineering mantrahek return odes of system alls|they may fail!

CS 502 4 week11-design.tex

Performanemore OS features, more time|self-inited performane hitoptimize where needed and until "good enough"|understand the performane problemand then expend just enough resoures to solve it.spae-time tradeo�s. Classi software problem.Cahing is good. Allows systems to work.Hints a similar idea of improving performane.exploit loalityoptimize the ommon ase

CS 502 5 week11-design.tex

Projet ManagementTesting is the hard part and simply determining "man-months" for a projet does not workas not all of the work an be done in parallel.Trends in Operating Systems Designlarge address spae OSesnetworking|fundamentalmultimediabattery-power (power is another resoure to be managed)embedded systems

CS 502 6 week11-design.tex

