
Operating System DesignChp 12, TanenbaumGood systems (not just operating) have
lear goals. Tanenbaum notes for general purposeoperating systems:1. de�ne abstra
tions2. provide primitive operations3. ensure isolation4. manage the hardwareWhy OS design is hard:1. extremely large programs (Windows 2000 with 29 million lines of
ode)2. must deal with
on
urren
y3. potential hostile users|prote
tion4. want to be able to share5. last a long time, don't die o� so easily6. designers don't have a
lear idea how systems will be used7. portability to run with lots of hardware platforms8. need for ba
kward
ompatibility

CS 502 1 week11-design.tex

Interfa
e DesignPrin
iple 1: simpli
ity"Perfe
tion is rea
hed not when there is no longer anything to add, but when there is nolonger anything to take away." (Antoine de St. Exupery)Prin
iple 2: CompletenessOS should do what is needed of it, but no more.|minimum of me
hanism and maximum of
larityTanenbaum
ites Minix and Amoeba as have just send/re
eive primitives (but then all thehard work is somewhere else!).Prin
iple 3: EÆ
ien
y
osts of system
alls should be intuitive

CS 502 2 week11-design.tex

ParadigmsWhat model do users of the system see:ar
hite
tural
oheren
e|do features hang together?user interfa
e paradigms|need
onsisten
y among appli
ationsexe
ution paradigms|algorithmi
 vs. event-driven
ode (threads vs. event-driven)data paradigm|everything is a:magneti
 tape|FORTRAN�le|Unixobje
t|Windowsdo
ument|WebSystem Call Interfa
eminimize system
alls, easier if a unifying data paradigmTanenbaum's �rst law of software|"Adding more
ode adds more bugs."Lamport: "Don't hide power"

CS 502 3 week11-design.tex

ImplementationSystem stru
ture:layeredexokernels (push OS fun
tions to be libraries for appli
ations)
lient-serverMe
hanism vs. poli
y (as dis
ussed in Intro). Implement me
hanism su
h that the poli
y
an be
exible.Orthogonality|ability to
ombine separate
on
epts (fork and exe
 of Unix)Naming|generally a high-level user visible name and a low-level (ugly) system name.Binding Time|early vs. late. When is a de
ision made? EÆ
ien
y vs.
exibility.Stati
 vs. Dynami
 stru
tures|de
lare at
ompile time or allo
ate at run time. AgaineÆ
ien
y vs.
exibility.Useful Te
hniqueshide hardware details: for example
onvert interrupts into thread invo
ations
onditional
ompilation for hardware detailsuse indire
tion to solve problems|more
exibility, less eÆ
ien
y.resuability|software engineering mantra
he
k return
odes of system
alls|they may fail!

CS 502 4 week11-design.tex

Performan
emore OS features, more time|self-in
i
ted performan
e hitoptimize where needed and until "good enough"|understand the performan
e problemand then expend just enough resour
es to solve it.spa
e-time tradeo�s. Classi
 software problem.Ca
hing is good. Allows systems to work.Hints a similar idea of improving performan
e.exploit lo
alityoptimize the
ommon
ase

CS 502 5 week11-design.tex

Proje
t ManagementTesting is the hard part and simply determining "man-months" for a proje
t does not workas not all of the work
an be done in parallel.Trends in Operating Systems Designlarge address spa
e OSesnetworking|fundamentalmultimediabattery-power (power is another resour
e to be managed)embedded systems

CS 502 6 week11-design.tex

