
SeurityGoals and Threats:1. data on�dentiality: being able to read data2. data integrity: being able to modify data3. system availability: denial of servieCryptographySub-topi is ryptography.Cryptography has its roots in the military, where low-level lerks (who ould not betrusted) arried seret messages between ommanders. The problem there was exhangingseret messages between high-level oÆers, when those messages were arried aross hostileterritories by low-level (possibly untrustable) lerks, with the inherent possibility thatmessages might fall into enemy hands. Today:� Networks are the \low-level lerks"beause most network tehnologies an be easilytapped. That is, they annot be trusted. LANs suh as Ethernets, for instane, allowany station to easily examine all pakets transmitted between any two mahines.Likewise, WANs often use the phone systems, and some ompanies (e.g, ompetitors)will not trust them.� While most users don't require serey in the military sense, most users don't wantthird parties to interept and read their private mail.In networks, several types of problems:Serey: Keeping information out of unauthorized users hands.Authentiation: Problem of impersonation where an intruder might masquerade as alegitimate user. Suh as obtaining message opies through wiretapping and thenusing a replay attak. An impersonator ould ask for information that they are notauthorized to see, or generate messages ausing inorret (and ertainly unauthorized)transations to take plae (e.g., transferring money from one aount to another).Note that an impersonator ould interept and modify messages, or reate new ones.Nonrepudiation: Digitial signatures so a user annot dislaim an agreement.Integrity Control : Message was the one really sent.CS 502 1 week10-seurity.tex

The only general solution to seurity issues is to enrypt a user's plaintext messages intoiphertext messages. Ciphertext is a \jumbled" form of the message that an only be usedif onverted bak into its original leartext. It is the iphertext that is sent aross thenetwork, and the intended reipient derypts the iphertext bak into the original plaintext.One of the fundamental rules of omputer seurity is that an intruder knows a lot, if noteverything, about the seurity system in use. \Seurity through obsurity" does not work!If a system has a vulnerability, one must assume that the intruder is aware of thatvulnerability.If enryption is used, for instane, one should assume that the intruder has a general ideaof the how the enryption algorithm works.The art of breaking iphers is alled ryptanalysis. The art of devising iphers is alledryptography. Cryptology refers olletively to the task of making and breaking iphers.One problem with enryption is that one an intruder has determined the enryptionalgorithm, it must be hanged immediately. How? Changing an algorithm may beimpratial.A ommon solution is to break the enryption proess into two parts: Use a generalenryption algorithm that uses a (short) string of haraters alled a key to selet one ofmany enryptions to use. Now the ode for the enryption algorithm hanges rarely, butthe key an be hanged as often as needed.Funtions are used to enrypt and derypt messages:Ciphertext = EK(P laintext) andP laintext = DK(Ciphertext); In the above terminology, EK means the message isenrypted using a key of K, while DK denotes the deryption funtion using a key of K.The properties of enryption funtions depend on the spei� funtion in use. For example,some funtions are designed in suh a way that the same key enrypts and derypts, butthat the enryption and deryption funtions di�er. For other funtions, the same funtionmay perform both enryption and deryption (e.g., enrypt and derypt are inverses ofeah other).

CS 502 2 week10-seurity.tex

From a ryptanalyst's point of view, the immediate goal is to guess the keys being used inso that messages an be derypted (or bogus messages an be enrypted). Theryptanalysis problem has four variations:Ciphertext Only: Ciphertext but no plaintext is present. Given only the iphertext,determine the key and the original text. The iphertext only problem is partiularlydiÆult to solve beause we may not even know when we have guessed the orretkey beause we don't know what the unenrypted data looks like.Veri�able Plaintext: We don't have any atual plaintext, but given iphertext, we anverify that we have guessed the orret key. This is weaker than the above, in thateven though we don't have plaintext, we an (somehow) determine whether or not wehave guessed the orret key. Example? A pair of (enrypted) request-responsemessages may arry the same sequene number, so that the lient an math responsemessages with the original request. When derypting the messages, we know we haveguessed the orret key if we obtain the same sequene number when derypting bothmessages. Thus, although we don't have any plaintext, we an verify that we haveobtained the plaintext from the iphertext. Another example is derypting messagesthat we know ontain asii text. We have know idea what the text is, but we anertainly reognize whether its asii or not.Known Plaintext: Both plaintext and its enrypted iphertext are available. In thisase, verifying that we have guessed the key is straightforward, sine we an test ourkey on the plaintext.Chosen Plaintext: Here, we have the ability to enrypt piees of plaintext of our ownhoosing.How are enryption algorithms broken? Brute fore. We an always try all possible keys, inan attempt to �nd the one that works. The amount of e�ort needed to break enryptionalgorithms using brute fore depends on two fators: 1) the amount of time needed toenrypt (derypt) a message using a given key, and 2) the total number of possible keysthat must be tried in the worst ase. If it takes a long time (days to years) to try all keys,it is unlikely that anyone an guess a key using brute fore.In pratie, brute fore is not always needed. Why? Brute fore is needed only if allombinations of bits (in keys) are equally likely to be present. If keys are user-hosenpasswords, then it may well be a word in a ditionary. In addition, most messages ontainpatterns. The more messages one has available, the easier it beomes to reognize patterns.If messages ontain english text, for instane, ertain letters and phrases appear more oftenthan others. Moreover, if the same key is used to enrypt subsequent messages, patterns inthe original message will translate into patterns in the iphertext. Reognizing patternsredues greatly the number of ombinations that need to be tried in guessing originalplaintext.CS 502 3 week10-seurity.tex

Note: The iphertext only problem is the most diÆult to solve. However, it is naive toassume that a ipher that an withstand a iphertext only attak is seure. In many ases,a ryptanalyst an make eduated guesses as to some the plaintext. For instane, remotelogin sessions usually start with a message suh as \Please Login:". Thus, mostpresent-day ommerial and government agenies desire that a ryptosystem be able towithstand a hosen plaintext attak.

CS 502 4 week10-seurity.tex

One-Time PadHow an we prevent statistial attaks? Never reuse the enryption key.Unfortunately, all urrent enryption methods have problems. Consider the one-time pad:1. It uses a random key that has the same length as the message being enrypted. Boththe enryptor and deryptor use the same key.2. The message is exlusive-or'd with the key to produe the iphertext.3. The reeiver derypts the iphertext using the same algorithm and key. ((A XORK) XOR K) = A.4. Have we solved our original problem? No! Beause the sender and reeive use thesame key, the key must be transferred to the reeiver. Exhanging keys is the verysame problem we are trying to solve!5. The key an never be reused (or it beomes easier to guess). That is, reusing keysallows statistial based attaks on the key.6. Choosing keys presents diÆulties; in partiular, \randomly generated" keys are notvery random at all. That is, omputer generated random numbers are atually wellde�ned sequenes. Although the generated numbers are uniformly distributed, theyare not random.7. It is the only provably seure method known at this time.

CS 502 5 week10-seurity.tex

Data Enryption Standard (DES)The data enryption standard (DES), developed by the NBS, has beome one popularenryption method:1. The alulation an be performed eÆiently using speial hardware, but far lesseÆiently by normal programs.2. Keys are 56 bits in size, large enough that they are diÆult to guess.However, ritis argue that both of these assumptions are false given today's tehnology. Inpartiular:1. Are 56-bit keys too small? Many people say yes. Indeed, IBM's original design used128-bit keys.2. Why aren't keys bigger? The key size was redued at the request of the NationalSeurity Ageny (NSA), who has never given a reason for the hange.3. IBM has never given a tehnial reason for the spei� design of its algorithm. Why?Again, this was done at NSA's request.4. Without knowing the design priniples, it is diÆult to know whether the ode anbe broken easily. Indeed, some ritis suggest that the NSA would feel veryunomfortable with an enryption standard that not even they an break.Both DES and one-time pad are onsidered onventional methods beause they use thesame key for both enryption and deryption. Conventional methods have the problemsthat keys must be distributed to both the sender and reipient.

CS 502 6 week10-seurity.tex

Publi Key CryptographyUntil now, we have assumed that hiding keys is of the utmost importane. However, thisleads to the key distribution problem. Another approah, alled Publi Key Enryption,uses two keys: a publi key and a private key. The publi key is given to everyone, whilethe private key is kept seret. It requires:1. P laintext = Derypt(Enrypt(P laintext)). (E.g., the enrypt and deryptoperations are inverses of eah other.)2. It must be extremely diÆult to dedue Derypt given Enrypt. That is, theenryption funtion is made available to everyone, so it shouldn't be possible forsomeone to dedue the deryption funtion given the enryption funtion.3. Derypt annot be broken by a hosen plaintext attak. Sine everyone has theenryption funtion, anyone an present their own hosen plaintext to the enryptionalgorithm.Under rules 2 and 3, Enrypt an be made publi and distributed to everyone else.Derypt remains private.The RSA (Rivest, Shamir, Adleman) algorithm is an enryption algorithm that satis�esthe above requirements. It is based on the fatoring of large prime numbers, whih no oneknows how to do eÆiently. Thus, RSA enryption is onsidered quite strong. RSAenryption uses a publi and private key. The publi key is made available to everyone, butthe private key is kept seret. RSA enryption takes plae as follows:P laintext = Kpri(Kpub(P laintext)), where Kpub denotes enryption using K's publi key,and Kpri denotes enryption using K's private key.

CS 502 7 week10-seurity.tex

SeuritySeurity implies that only the reipient of a message may derypt it.Now, when A wants to send a message to B, A enrypts messages for B using B's publikey and sends the ipher to B, whih B derypts with its private key.Can anyone else derypt messages intended for B? No, one must have B 's private key toderypt the message, whih only B has.Unfortunately, although only B an derypt the message, B annot be sure that A atuallysent the message.ipher = Bpub(Msg), msg = Bpri(ipher)

CS 502 8 week10-seurity.tex

AuthentiationAuthentiation is onerned with verifying that a message supposedly from B, atually didoriginate from B.The key to authentiation is having lient A provide information that only A knows.Examples? For example, a password. The drawbak of a password is an intruder might seethe password (if it is unenrypted) and would then be able to gain unauthorized aess tothe system. Even better would be the enryption of a number using a key that only Aknows.For authentiation, it is onvenient to assume that:Message = Kpri(Kpub(Message)) = Kpub(Kpri(Message))That is, that a user's deryption key an also enrypt messages. The RSA algorithmdisussed above has this property.How does this give us authentiation? Assume A wants to authentiate itself to B :1. B selets a random number X and sends Apub(X) to A.2. A omputes Apri(Apub(X)) = X. That is, it derypts the reeived message using itsprivate key.3. A returns Apri(X + 1), whih B derypts. B knows it is ommuniating with A if itgets the expeted answer of X+1. That is, to ompute X + 1, A must have been ableto derypt X, whih means it must have A's private key.Problem? We still do not yet have serey. Although B an verify that a message amefrom A, anyone else who obtains a opy of the message an derypt it too! We an ombinethe two ideas to reate messages that are both seret and authentiated. A sends thefollowing message to B: Cipher = Apri(Bpub(Message))whih B proesses via: Bpri(Apub(Cipher)) =MessageNote:1. B is sure that A sent the message beause only A knows Apri. This is how we getauthentiation | foring A to produe some information that only A an have.2. A is sure that only B an read the message beause only B knows its private key(seure)3. Unfortunately, eah message transation involves four iterations of the funtions,adding substantial ost.CS 502 9 week10-seurity.tex

Replay AttaksProtetion against replay attaks (where someone replays old message in the hopes offoring a server to (improperly) re-perform a transation) an be handled as follows:1. Client sends request to server.2. Server returns to lient a random number R (in an enrypted message).3. Client returns (R + 1) to server.4. Have eah transation uses a di�erent random number. This e�etively preventsreplays beause the returned (R + 1) will only math the old transation, not the onebeing performed now. That is, if the same transation were done twie (legitimately),di�erent transation numbers would be used. Thus, replay attaks are not possible.The key here is that the server fores the lient to prove that it knows its private key beforedoing a transation. Thus, and intruder annot reord a transation and play it bak later| the server would generate a new random number that the lient ould not derypt.

CS 502 10 week10-seurity.tex

Digital SignaturesIn the real world, signatures are legally binding. If someone signs a ontrat, the signatureis proof that a party did agree to the terms of the ontrat. How an we have theequivalent of signatures with omputers?The problem of sending a \signed" message from one party to another has two parts:Authentiation: Having the reeiver verify the laimed identity of the sender (e.g., \Areyou really ew�s.wpi.edu?"). We have already disussed how authentiation an bedone.Digital signature: Preventing the sender from later repudiating the message (e.g., \Hey,I never said that!").Digital signatures an be ahieved by using the publi key enryption. Suppose B isonerned that A will later disavow having sent a message:1. A sends to B: Bpub(Apri(Message)).2. B derypts the message using its private key, but saves the signature Apri(Message)in arhival storage.3. B then derypts the message using A's publi key and proesses the transation.Later, when A denies ever having sent the message, B produes signature. Why an't Adisavow the signature? Only A's private key ould have produed it.

CS 502 11 week10-seurity.tex

User-AuthentiationThe problem of identifying users when they log in is alled user authentiation. Mostauthentiation methods are based on:1. what the user knows (e.g., passwords)2. what the user has (e.g., a plasti ard)3. physial harateristis of the user (e.g., �ngerprints)PasswordsThe most widespread form of authentiation is requiring the user to enter a password.In the �rst implementation of Unix, a password �le ontained the atual password for eahuser. This approah had several problems:1. there is no way to prevent the making of opies by privileged users2. software (or human) errors ould ause the ontents of the �le to beome available toothers3. the ontents of the �le saved on bakup tapes were available to anyone with physialaess to the tapesAnother possible approah is to enrypt eah user's password with some key and store theenrypted version: Enypted Password = Enrypt(Password, Key)Now, when the user tries to log in, his password is enrypted and ompared with theenrypted version in the password �le. If the two math, the log in sueeds.Moreover, if the enryption funtion is hard to invert (even with a key), then the password�le ould be read by any programs. Enryption funtions that are hard to invert are alledtrap-door funtions.The next version of the password enryption used an algorithm that simulated the M-209ipher mahine used by the US Army during World War II. Beause the yphertext itprodued was easily invertible (given the key), the password was used as a key to enrypt aonstant.CS 502 12 week10-seurity.tex

Attaks on Enrypted PasswordsOne approah to penetrating this sheme is to keep guessing the key until one sueeds.Brute fore and fast systems.The searh an be further speeded up by �rst trying:1. the 250,000 words in a ditionary (spelled forwards and bakwards)2. list of �rst names, last names, street names, and ity names3. valid liense plates in the state4. room numbers, soial seurity numbers, telephone numbers, et.Morris and Thompson (1979), authors of the Unix password sheme, ompiled a list oflikely passwords using the above heuristis, enrypted eah of them using the knownenryption algorithm, and ompared them with a list of enrypted password available attheir site.Over 86% of all passwords turned up in their list!Now systems impose requirements on passwords to ensure users use a variety of haratersin passwords.

CS 502 13 week10-seurity.tex

Salted PasswordsConsider an intruder attempting to gain aess to as many aounts on as many systems aspossible. For eah enrypted password he preomputes (from a list of good andidates ofourse), he an hek the entries for all users.The tehnique of salted passwords renders suh attaks useless. Unix modi�es the previousalgorithm as follows:1. when a new password is being entered, the password program obtains a 12-bitrandom number (by reading the real-time lok) and appends it to the passwordentered by the user.2. the onatenated string of the 12-bit salt and the �rst eight haraters of thepassword are used as a key3. both the enrypted password and the 12-bit salt are stored in the password �le4. when the user subsequently attempts to log in, the 12-bit salt is extrated from the�le and ombined with the typed passwordNow an intruder an no longer amortize the ost of one enryption over all the passwordentries to be searhed.Other MethodsIn password proteted systems, the main idea is that authorized users have a ertain pieeof information that they present to the system. A generalization of this idea is to have theomputer keep a large amount of information that only an authorized user knows. Ratherthan ask for a password, the system an ask the user a series of questions:� What is your quest?� What is your favorite olor?� How fast does a sea gull y?At login time, the system asks a series of questions (hosen at random) that the user isexpeted to know. Beause the set of questions hanges for eah login attempt, an intruderan't gain aess by looking over a user's shoulder when he enters his password.
CS 502 14 week10-seurity.tex

Other ApproahesSmart ard for authentiation (Fig 9-7). Use smart ard at lient site to determineresponse to a hallenge from remote omputer.Biometris|�ngerprint, voie.

CS 502 15 week10-seurity.tex

Attaks from Inside the SystemSo what an be done one aess is obtained (either legitimately or from an intruder)?Relevant to OS study.Trojan horse (substitute a maliious opy) of a well-known program1. leave a phony program to simulate login program2. plae a program with a well-known name in the user's path so the user unknowinglyexeutes the non-standard opy of a program. A reason not to inlude "." inommand path. The non-standard opy an emulate normal ommand plus have userpermissions for aess to other objets.3. logi bombs left in ode that ativate based on a partiular time or event (ornon-event if they must be neutralized).4. trap doors to allow aess with a speial password or login.5. bu�er overow attaks exploit knowledge of ode struture to possibly gain aessprivileges of a program that is attaked.

CS 502 16 week10-seurity.tex

Attaks from Outside the SystemViruses an be spread when programs exeute ode sent to them|suh as emailattahments.Try to limit the available operations|sandboxing|suh as Java applets.Work to limit the apabilities of exeuting suh attahments (SubOS work).Anomaly detetion|build up a pro�le of standard behavior and then look for anomalies inaess patterns.A virus may work by substituting opies of known programs|a trojan horse! Examinemeans to detet when non-standard system all sequenes from standard programs aregenerated.worm|self-repliating program.

CS 502 17 week10-seurity.tex

