
Se
urityGoals and Threats:1. data
on�dentiality: being able to read data2. data integrity: being able to modify data3. system availability: denial of servi
eCryptographySub-topi
 is
ryptography.Cryptography has its roots in the military, where low-level
lerks (who
ould not betrusted)
arried se
ret messages between
ommanders. The problem there was ex
hangingse
ret messages between high-level oÆ
ers, when those messages were
arried a
ross hostileterritories by low-level (possibly untrustable)
lerks, with the inherent possibility thatmessages might fall into enemy hands. Today:� Networks are the \low-level
lerks"be
ause most network te
hnologies
an be easilytapped. That is, they
annot be trusted. LANs su
h as Ethernets, for instan
e, allowany station to easily examine all pa
kets transmitted between any two ma
hines.Likewise, WANs often use the phone systems, and some
ompanies (e.g,
ompetitors)will not trust them.� While most users don't require se
re
y in the military sense, most users don't wantthird parties to inter
ept and read their private mail.In networks, several types of problems:Se
re
y: Keeping information out of unauthorized users hands.Authenti
ation: Problem of impersonation where an intruder might masquerade as alegitimate user. Su
h as obtaining message
opies through wiretapping and thenusing a replay atta
k. An impersonator
ould ask for information that they are notauthorized to see, or generate messages
ausing in
orre
t (and
ertainly unauthorized)transa
tions to take pla
e (e.g., transferring money from one a

ount to another).Note that an impersonator
ould inter
ept and modify messages, or
reate new ones.Nonrepudiation: Digitial signatures so a user
annot dis
laim an agreement.Integrity Control : Message was the one really sent.CS 502 1 week10-se
urity.tex

The only general solution to se
urity issues is to en
rypt a user's plaintext messages into
iphertext messages. Ciphertext is a \jumbled" form of the message that
an only be usedif
onverted ba
k into its original
leartext. It is the
iphertext that is sent a
ross thenetwork, and the intended re
ipient de
rypts the
iphertext ba
k into the original plaintext.One of the fundamental rules of
omputer se
urity is that an intruder knows a lot, if noteverything, about the se
urity system in use. \Se
urity through obs
urity" does not work!If a system has a vulnerability, one must assume that the intruder is aware of thatvulnerability.If en
ryption is used, for instan
e, one should assume that the intruder has a general ideaof the how the en
ryption algorithm works.The art of breaking
iphers is
alled
ryptanalysis. The art of devising
iphers is
alled
ryptography. Cryptology refers
olle
tively to the task of making and breaking
iphers.One problem with en
ryption is that on
e an intruder has determined the en
ryptionalgorithm, it must be
hanged immediately. How? Changing an algorithm may beimpra
ti
al.A
ommon solution is to break the en
ryption pro
ess into two parts: Use a generalen
ryption algorithm that uses a (short) string of
hara
ters
alled a key to sele
t one ofmany en
ryptions to use. Now the
ode for the en
ryption algorithm
hanges rarely, butthe key
an be
hanged as often as needed.Fun
tions are used to en
rypt and de
rypt messages:Ciphertext = EK(P laintext) andP laintext = DK(Ciphertext); In the above terminology, EK means the message isen
rypted using a key of K, while DK denotes the de
ryption fun
tion using a key of K.The properties of en
ryption fun
tions depend on the spe
i�
 fun
tion in use. For example,some fun
tions are designed in su
h a way that the same key en
rypts and de
rypts, butthat the en
ryption and de
ryption fun
tions di�er. For other fun
tions, the same fun
tionmay perform both en
ryption and de
ryption (e.g., en
rypt and de
rypt are inverses ofea
h other).

CS 502 2 week10-se
urity.tex

From a
ryptanalyst's point of view, the immediate goal is to guess the keys being used inso that messages
an be de
rypted (or bogus messages
an be en
rypted). The
ryptanalysis problem has four variations:Ciphertext Only: Ciphertext but no plaintext is present. Given only the
iphertext,determine the key and the original text. The
iphertext only problem is parti
ularlydiÆ
ult to solve be
ause we may not even know when we have guessed the
orre
tkey be
ause we don't know what the unen
rypted data looks like.Veri�able Plaintext: We don't have any a
tual plaintext, but given
iphertext, we
anverify that we have guessed the
orre
t key. This is weaker than the above, in thateven though we don't have plaintext, we
an (somehow) determine whether or not wehave guessed the
orre
t key. Example? A pair of (en
rypted) request-responsemessages may
arry the same sequen
e number, so that the
lient
an mat
h responsemessages with the original request. When de
rypting the messages, we know we haveguessed the
orre
t key if we obtain the same sequen
e number when de
rypting bothmessages. Thus, although we don't have any plaintext, we
an verify that we haveobtained the plaintext from the
iphertext. Another example is de
rypting messagesthat we know
ontain as
ii text. We have know idea what the text is, but we
an
ertainly re
ognize whether its as
ii or not.Known Plaintext: Both plaintext and its en
rypted
iphertext are available. In this
ase, verifying that we have guessed the key is straightforward, sin
e we
an test ourkey on the plaintext.Chosen Plaintext: Here, we have the ability to en
rypt pie
es of plaintext of our own
hoosing.How are en
ryption algorithms broken? Brute for
e. We
an always try all possible keys, inan attempt to �nd the one that works. The amount of e�ort needed to break en
ryptionalgorithms using brute for
e depends on two fa
tors: 1) the amount of time needed toen
rypt (de
rypt) a message using a given key, and 2) the total number of possible keysthat must be tried in the worst
ase. If it takes a long time (days to years) to try all keys,it is unlikely that anyone
an guess a key using brute for
e.In pra
ti
e, brute for
e is not always needed. Why? Brute for
e is needed only if all
ombinations of bits (in keys) are equally likely to be present. If keys are user-
hosenpasswords, then it may well be a word in a di
tionary. In addition, most messages
ontainpatterns. The more messages one has available, the easier it be
omes to re
ognize patterns.If messages
ontain english text, for instan
e,
ertain letters and phrases appear more oftenthan others. Moreover, if the same key is used to en
rypt subsequent messages, patterns inthe original message will translate into patterns in the
iphertext. Re
ognizing patternsredu
es greatly the number of
ombinations that need to be tried in guessing originalplaintext.CS 502 3 week10-se
urity.tex

Note: The
iphertext only problem is the most diÆ
ult to solve. However, it is naive toassume that a
ipher that
an withstand a
iphertext only atta
k is se
ure. In many
ases,a
ryptanalyst
an make edu
ated guesses as to some the plaintext. For instan
e, remotelogin sessions usually start with a message su
h as \Please Login:". Thus, mostpresent-day
ommer
ial and government agen
ies desire that a
ryptosystem be able towithstand a
hosen plaintext atta
k.

CS 502 4 week10-se
urity.tex

One-Time PadHow
an we prevent statisti
al atta
ks? Never reuse the en
ryption key.Unfortunately, all
urrent en
ryption methods have problems. Consider the one-time pad:1. It uses a random key that has the same length as the message being en
rypted. Boththe en
ryptor and de
ryptor use the same key.2. The message is ex
lusive-or'd with the key to produ
e the
iphertext.3. The re
eiver de
rypts the
iphertext using the same algorithm and key. ((A XORK) XOR K) = A.4. Have we solved our original problem? No! Be
ause the sender and re
eive use thesame key, the key must be transferred to the re
eiver. Ex
hanging keys is the verysame problem we are trying to solve!5. The key
an never be reused (or it be
omes easier to guess). That is, reusing keysallows statisti
al based atta
ks on the key.6. Choosing keys presents diÆ
ulties; in parti
ular, \randomly generated" keys are notvery random at all. That is,
omputer generated random numbers are a
tually wellde�ned sequen
es. Although the generated numbers are uniformly distributed, theyare not random.7. It is the only provably se
ure method known at this time.

CS 502 5 week10-se
urity.tex

Data En
ryption Standard (DES)The data en
ryption standard (DES), developed by the NBS, has be
ome one popularen
ryption method:1. The
al
ulation
an be performed eÆ
iently using spe
ial hardware, but far lesseÆ
iently by normal programs.2. Keys are 56 bits in size, large enough that they are diÆ
ult to guess.However,
riti
s argue that both of these assumptions are false given today's te
hnology. Inparti
ular:1. Are 56-bit keys too small? Many people say yes. Indeed, IBM's original design used128-bit keys.2. Why aren't keys bigger? The key size was redu
ed at the request of the NationalSe
urity Agen
y (NSA), who has never given a reason for the
hange.3. IBM has never given a te
hni
al reason for the spe
i�
 design of its algorithm. Why?Again, this was done at NSA's request.4. Without knowing the design prin
iples, it is diÆ
ult to know whether the
ode
anbe broken easily. Indeed, some
riti
s suggest that the NSA would feel veryun
omfortable with an en
ryption standard that not even they
an break.Both DES and one-time pad are
onsidered
onventional methods be
ause they use thesame key for both en
ryption and de
ryption. Conventional methods have the problemsthat keys must be distributed to both the sender and re
ipient.

CS 502 6 week10-se
urity.tex

Publi
 Key CryptographyUntil now, we have assumed that hiding keys is of the utmost importan
e. However, thisleads to the key distribution problem. Another approa
h,
alled Publi
 Key En
ryption,uses two keys: a publi
 key and a private key. The publi
 key is given to everyone, whilethe private key is kept se
ret. It requires:1. P laintext = De
rypt(En
rypt(P laintext)). (E.g., the en
rypt and de
ryptoperations are inverses of ea
h other.)2. It must be extremely diÆ
ult to dedu
e De
rypt given En
rypt. That is, theen
ryption fun
tion is made available to everyone, so it shouldn't be possible forsomeone to dedu
e the de
ryption fun
tion given the en
ryption fun
tion.3. De
rypt
annot be broken by a
hosen plaintext atta
k. Sin
e everyone has theen
ryption fun
tion, anyone
an present their own
hosen plaintext to the en
ryptionalgorithm.Under rules 2 and 3, En
rypt
an be made publi
 and distributed to everyone else.De
rypt remains private.The RSA (Rivest, Shamir, Adleman) algorithm is an en
ryption algorithm that satis�esthe above requirements. It is based on the fa
toring of large prime numbers, whi
h no oneknows how to do eÆ
iently. Thus, RSA en
ryption is
onsidered quite strong. RSAen
ryption uses a publi
 and private key. The publi
 key is made available to everyone, butthe private key is kept se
ret. RSA en
ryption takes pla
e as follows:P laintext = Kpri(Kpub(P laintext)), where Kpub denotes en
ryption using K's publi
 key,and Kpri denotes en
ryption using K's private key.

CS 502 7 week10-se
urity.tex

Se
uritySe
urity implies that only the re
ipient of a message may de
rypt it.Now, when A wants to send a message to B, A en
rypts messages for B using B's publi
key and sends the
ipher to B, whi
h B de
rypts with its private key.Can anyone else de
rypt messages intended for B? No, one must have B 's private key tode
rypt the message, whi
h only B has.Unfortunately, although only B
an de
rypt the message, B
annot be sure that A a
tuallysent the message.
ipher = Bpub(Msg), msg = Bpri(
ipher)

CS 502 8 week10-se
urity.tex

Authenti
ationAuthenti
ation is
on
erned with verifying that a message supposedly from B, a
tually didoriginate from B.The key to authenti
ation is having
lient A provide information that only A knows.Examples? For example, a password. The drawba
k of a password is an intruder might seethe password (if it is unen
rypted) and would then be able to gain unauthorized a

ess tothe system. Even better would be the en
ryption of a number using a key that only Aknows.For authenti
ation, it is
onvenient to assume that:Message = Kpri(Kpub(Message)) = Kpub(Kpri(Message))That is, that a user's de
ryption key
an also en
rypt messages. The RSA algorithmdis
ussed above has this property.How does this give us authenti
ation? Assume A wants to authenti
ate itself to B :1. B sele
ts a random number X and sends Apub(X) to A.2. A
omputes Apri(Apub(X)) = X. That is, it de
rypts the re
eived message using itsprivate key.3. A returns Apri(X + 1), whi
h B de
rypts. B knows it is
ommuni
ating with A if itgets the expe
ted answer of X+1. That is, to
ompute X + 1, A must have been ableto de
rypt X, whi
h means it must have A's private key.Problem? We still do not yet have se
re
y. Although B
an verify that a message
amefrom A, anyone else who obtains a
opy of the message
an de
rypt it too! We
an
ombinethe two ideas to
reate messages that are both se
ret and authenti
ated. A sends thefollowing message to B: Cipher = Apri(Bpub(Message))whi
h B pro
esses via: Bpri(Apub(Cipher)) =MessageNote:1. B is sure that A sent the message be
ause only A knows Apri. This is how we getauthenti
ation | for
ing A to produ
e some information that only A
an have.2. A is sure that only B
an read the message be
ause only B knows its private key(se
ure)3. Unfortunately, ea
h message transa
tion involves four iterations of the fun
tions,adding substantial
ost.CS 502 9 week10-se
urity.tex

Replay Atta
ksProte
tion against replay atta
ks (where someone replays old message in the hopes offor
ing a server to (improperly) re-perform a transa
tion)
an be handled as follows:1. Client sends request to server.2. Server returns to
lient a random number R (in an en
rypted message).3. Client returns (R + 1) to server.4. Have ea
h transa
tion uses a di�erent random number. This e�e
tively preventsreplays be
ause the returned (R + 1) will only mat
h the old transa
tion, not the onebeing performed now. That is, if the same transa
tion were done twi
e (legitimately),di�erent transa
tion numbers would be used. Thus, replay atta
ks are not possible.The key here is that the server for
es the
lient to prove that it knows its private key beforedoing a transa
tion. Thus, and intruder
annot re
ord a transa
tion and play it ba
k later| the server would generate a new random number that the
lient
ould not de
rypt.

CS 502 10 week10-se
urity.tex

Digital SignaturesIn the real world, signatures are legally binding. If someone signs a
ontra
t, the signatureis proof that a party did agree to the terms of the
ontra
t. How
an we have theequivalent of signatures with
omputers?The problem of sending a \signed" message from one party to another has two parts:Authenti
ation: Having the re
eiver verify the
laimed identity of the sender (e.g., \Areyou really
ew�
s.wpi.edu?"). We have already dis
ussed how authenti
ation
an bedone.Digital signature: Preventing the sender from later repudiating the message (e.g., \Hey,I never said that!").Digital signatures
an be a
hieved by using the publi
 key en
ryption. Suppose B is
on
erned that A will later disavow having sent a message:1. A sends to B: Bpub(Apri(Message)).2. B de
rypts the message using its private key, but saves the signature Apri(Message)in ar
hival storage.3. B then de
rypts the message using A's publi
 key and pro
esses the transa
tion.Later, when A denies ever having sent the message, B produ
es signature. Why
an't Adisavow the signature? Only A's private key
ould have produ
ed it.

CS 502 11 week10-se
urity.tex

User-Authenti
ationThe problem of identifying users when they log in is
alled user authenti
ation. Mostauthenti
ation methods are based on:1. what the user knows (e.g., passwords)2. what the user has (e.g., a plasti

ard)3. physi
al
hara
teristi
s of the user (e.g., �ngerprints)PasswordsThe most widespread form of authenti
ation is requiring the user to enter a password.In the �rst implementation of Unix, a password �le
ontained the a
tual password for ea
huser. This approa
h had several problems:1. there is no way to prevent the making of
opies by privileged users2. software (or human) errors
ould
ause the
ontents of the �le to be
ome available toothers3. the
ontents of the �le saved on ba
kup tapes were available to anyone with physi
ala

ess to the tapesAnother possible approa
h is to en
rypt ea
h user's password with some key and store theen
rypted version: En
ypted Password = En
rypt(Password, Key)Now, when the user tries to log in, his password is en
rypted and
ompared with theen
rypted version in the password �le. If the two mat
h, the log in su

eeds.Moreover, if the en
ryption fun
tion is hard to invert (even with a key), then the password�le
ould be read by any programs. En
ryption fun
tions that are hard to invert are
alledtrap-door fun
tions.The next version of the password en
ryption used an algorithm that simulated the M-209
ipher ma
hine used by the US Army during World War II. Be
ause the
yphertext itprodu
ed was easily invertible (given the key), the password was used as a key to en
rypt a
onstant.CS 502 12 week10-se
urity.tex

Atta
ks on En
rypted PasswordsOne approa
h to penetrating this s
heme is to keep guessing the key until one su

eeds.Brute for
e and fast systems.The sear
h
an be further speeded up by �rst trying:1. the 250,000 words in a di
tionary (spelled forwards and ba
kwards)2. list of �rst names, last names, street names, and
ity names3. valid li
ense plates in the state4. room numbers, so
ial se
urity numbers, telephone numbers, et
.Morris and Thompson (1979), authors of the Unix password s
heme,
ompiled a list oflikely passwords using the above heuristi
s, en
rypted ea
h of them using the knownen
ryption algorithm, and
ompared them with a list of en
rypted password available attheir site.Over 86% of all passwords turned up in their list!Now systems impose requirements on passwords to ensure users use a variety of
hara
tersin passwords.

CS 502 13 week10-se
urity.tex

Salted PasswordsConsider an intruder attempting to gain a

ess to as many a

ounts on as many systems aspossible. For ea
h en
rypted password he pre
omputes (from a list of good
andidates of
ourse), he
an
he
k the entries for all users.The te
hnique of salted passwords renders su
h atta
ks useless. Unix modi�es the previousalgorithm as follows:1. when a new password is being entered, the password program obtains a 12-bitrandom number (by reading the real-time
lo
k) and appends it to the passwordentered by the user.2. the
on
atenated string of the 12-bit salt and the �rst eight
hara
ters of thepassword are used as a key3. both the en
rypted password and the 12-bit salt are stored in the password �le4. when the user subsequently attempts to log in, the 12-bit salt is extra
ted from the�le and
ombined with the typed passwordNow an intruder
an no longer amortize the
ost of one en
ryption over all the passwordentries to be sear
hed.Other MethodsIn password prote
ted systems, the main idea is that authorized users have a
ertain pie
eof information that they present to the system. A generalization of this idea is to have the
omputer keep a large amount of information that only an authorized user knows. Ratherthan ask for a password, the system
an ask the user a series of questions:� What is your quest?� What is your favorite
olor?� How fast does a sea gull
y?At login time, the system asks a series of questions (
hosen at random) that the user isexpe
ted to know. Be
ause the set of questions
hanges for ea
h login attempt, an intruder
an't gain a

ess by looking over a user's shoulder when he enters his password.
CS 502 14 week10-se
urity.tex

Other Approa
hesSmart
ard for authenti
ation (Fig 9-7). Use smart
ard at
lient site to determineresponse to a
hallenge from remote
omputer.Biometri
s|�ngerprint, voi
e.

CS 502 15 week10-se
urity.tex

Atta
ks from Inside the SystemSo what
an be done on
e a

ess is obtained (either legitimately or from an intruder)?Relevant to OS study.Trojan horse (substitute a mali
ious
opy) of a well-known program1. leave a phony program to simulate login program2. pla
e a program with a well-known name in the user's path so the user unknowinglyexe
utes the non-standard
opy of a program. A reason not to in
lude "." in
ommand path. The non-standard
opy
an emulate normal
ommand plus have userpermissions for a

ess to other obje
ts.3. logi
 bombs left in
ode that a
tivate based on a parti
ular time or event (ornon-event if they must be neutralized).4. trap doors to allow a

ess with a spe
ial password or login.5. bu�er over
ow atta
ks exploit knowledge of
ode stru
ture to possibly gain a

essprivileges of a program that is atta
ked.

CS 502 16 week10-se
urity.tex

Atta
ks from Outside the SystemViruses
an be spread when programs exe
ute
ode sent to them|su
h as emailatta
hments.Try to limit the available operations|sandboxing|su
h as Java applets.Work to limit the
apabilities of exe
uting su
h atta
hments (SubOS work).Anomaly dete
tion|build up a pro�le of standard behavior and then look for anomalies ina

ess patterns.A virus may work by substituting
opies of known programs|a trojan horse! Examinemeans to dete
t when non-standard system
all sequen
es from standard programs aregenerated.worm|self-repli
ating program.

CS 502 17 week10-se
urity.tex

