CS 502 Operating Systems WPI, Fall 2003

Craig E. Wills Project 4 (30 pts)
Assigned: Monday, November 10, 2003 Due: Monday, December 1, 2003
Introduction

This assignment is an opportunity for you to use Unix sockets to build a real server. You
can use the sample code given in class as a starting point for building a server using sockets.
You will be building a server to actually serve Web content. Your server will respond to
real HT'TP requests and reply with appropriate responses. You can test your client using a
standard Web browser.

Basic Objective

Your server will be reading HT'TP GET requests sent to a given port number. For example, if
your server is started up on the “cccl” machine on port 4242 then the URL for accessing the
text version of the WPI home page is http://cccl.wpi.edu:4242/index-t.html. Because
your server should assume that all requests map to files and because the main WPI home
page is generated with a CGI script, the home page will not be served correctly by your
server.

The content served by the WPI Web server is located in the directory /www/docs. This di-
rectory is prepended to each request. Thus the given URL maps to the file /www/docs/index~-t.html.
The Web server also has a special rule for requests ending in a “/”. These requests appear
to be directories, but the Web server appends the file index.html on to the end of these
requests. Thus a request for /News/ should map to the file /www/docs/News/index.html.
You should simply ignore all requests that do not map to a regular file after following the
given mapping rules. Web servers have other mapping rules, but these are the only two we
will use in this project.

Your server should be started up giving a port number on the command line. Port
numbers up to 1024 are reserved so use a port number (16-bit integer) larger than this value.
If you receive a “bind failed” error then another server (perhaps one of your’s!) is currently
bound to that port. You may also see this error message if you try to restart your server
immediately after it has just exited. The Unix operating system uses a short time limit (30
secs?) in which it refuses to let a new process bind to a port that has just been used.

In the simplest form your server should be a single process that accepts a connection using
accept(), receives the request and its headers then sends a response header and content back
to the client. The server then closes the socket connection used for handling this request.

HTTP Request

Your server first needs to handle an HTTP request. The following is an example request
generated by a real browser for /index-t.html located on cccl.wpi.edu at port 4242. The
first line of the request contains the type of request (you only need to handle GET, but other



types such as HEAD and POST are possible in HTTP). Following the GET request is the object
to be requested. You will first want to ensure that the request is of type GET and then
extract the object string. The remainder of the line identifies the HT'TP version used by the
browser. You can ignore the HT'TP version. The remaining lines are HTTP request headers.
In HTTP/1.1, the Host field is required, but you can ignore this line and all other headers.
However, your server needs to read these headers.

GET /index-t.html HTTP/1.0

Connection: Keep—-Alive

User-Agent: Mozilla/4.7 [en] (X11; U; SunOS 5.7 sun4u)

Host: cccl.wpi.edu:4242

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */x*
Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: 1is0-8859-1,%*,utf-8

To aid you in reading the request a line at a time, the routine sockreadline() has been
created and put in the file /cs/cs502/public/example/sockreadline.c, which you are
welcome to copy and use. This routine receives a character at a time from a given socket
and stores these characters in a NULL-terminated character buffer. It returns when the
newline (\n) character is reached.

Note that the HTTP specification expects all lines to be terminated with a CR (carriage
return) and LF (line feed) characters. These characters are “\r\n” in C/C++. Note also
that the HT'TP specification expects a “blank” line containing only “\r\n” at the end of the
request headers. Your server should keep reading lines until it receives such a line.

HTTP Response

There are a number of HT'TP response codes, but for this project we will use only two: 200
and 404. If you receive a GET request for an object that can be successfully mapped to a
file then you should open this file for reading using the system call open(). If you successfully
open the file then your server should first send the HT'TP response “HTTP/1.0 200 OK\r\n\r\n”
indicating success followed by a blank line. Note that two sets of CR/LF characters are sent.
Subsequently you should use read() to read all content from the file and send it on to the
server. Use close() to close the file when done reading and close the socket connection. Your
server is done handling this request. Note that you should use these system calls for 1/O
rather than use routines expecting only text as the object contents may not be text.

If the request is not valid or cannot be mapped to a file that is successfully opened then
your server should send back to the client the response “HTTP/1.0 404 Not Found\r\n\r\n”
indicating failure and close the socket connection.



Client Testing

To test your server, you can use a standard browser. However, to make testing simpler and
to be able to see the response headers, you should create a simple Web client. This client
should connect to a given port on a given host and send a minimal request string. Use
command line arguments to control your client. For example:

% webclient cccl 4242 /index-t.html

can be used to request the object from port 4242 on the machine cccl. Your simple
webclient will need to connect to the port and send the GET line (ending in CR/LF) followed
by a blank line with CR/LF. You can use “HTTP/1.0” as the version. Your client should
then receive back the response headers and content from the server and print them to stdout.
Beware of requesting images with your simple client as the content will likely will not print
well. You should also be able to use your Web client with any Web server by sending to the
standard Web server port 80.

Completing a simple server and a simple client and verifying they both work for HTML
content is worth 20 out of 30 points for the project.

Multi-Process Server

For an additional five points on the project, you should modify your Web server to fork off
a process to handle each request. The child process will use the socket value returned by
accept() to handle all interaction with the client while the parent process loops back waiting
to accept additional connections. This approach will allow requests to be handled in parallel
by the server.

Watch out for this approach as the parent and child processes should be sure to close
socket connections they are not using. Also be sure to insert code to cleanup “zombie”
processes that are left after the child processes terminate. Use wait3() to do so such as the
following code that collects status information. See the man page for additional information.

int pid;
int status;
struct rusage ruse;

while ((pid = wait3(&status, WNOHANG, &ruse)) > 0)

3

You can either do this in your main server code or in a signal handler, but in the latter
case accept() will return an error indicating an interrupted system call (EINTR), which you
need to check for.

Your server should support either forking or non-forking. Use a command line argument
(default is non-forking) to indicate which approach to use. For example:

% webserver 4242 fork

is used to start your server on port 4242 with the forking option. Use “none” or leave
out the last argument to indicate a non-forking server.



Multi-Threaded Server

For the remaining five points of the project, enhance your server to also support threads. In
this version only one process is used, but a new thread is spawned to handle each request.
The main thread will loop back to accept additional requests. Remember that sockets are
shared amongst all threads so spawned threads should not close the socket used by the
main thread for accepting connections. Also remember that all threads run in the same
address space so that the use of shared buffers/variables or non-reentrant routines will cause
problems.

Use the command-line argument “thread” to indicate your Web server is running in
multi-threaded mode.

Performance Testing

If you implement more than one server version you should do some performance testing to
see how many requests each approach can handle. A simple test is to repeatedly request the
same Web object from the server. You can use your Web client to test, but you will need to
run multiple versions. Alternately you can use a web server testing tool.

Submission

Electronically turn in the code for project using the project name proj4. You should include a

Makefile for compiling “webserver” and “webclient”. The file Makefile in /cs/cs502/public/example
can be used to compile the sockclient and sockserver examples given in class. You can start

with this makefile and modify it appropriately. Make sure you use a TAB character to indent

the operations for a target as is done in the given file Makefile.



