
CS 502 Operating Systems WPI, Fall 2003Craig E. Wills Proje
t 4 (30 pts)Assigned: Monday, November 10, 2003 Due: Monday, De
ember 1, 2003Introdu
tionThis assignment is an opportunity for you to use Unix so
kets to build a real server. You
an use the sample 
ode given in 
lass as a starting point for building a server using so
kets.You will be building a server to a
tually serve Web 
ontent. Your server will respond toreal HTTP requests and reply with appropriate responses. You 
an test your 
lient using astandard Web browser.Basi
 Obje
tiveYour server will be reading HTTP GET requests sent to a given port number. For example, ifyour server is started up on the \


1" ma
hine on port 4242 then the URL for a

essing thetext version of the WPI home page is http://


1.wpi.edu:4242/index-t.html. Be
auseyour server should assume that all requests map to �les and be
ause the main WPI homepage is generated with a CGI s
ript, the home page will not be served 
orre
tly by yourserver.The 
ontent served by the WPI Web server is lo
ated in the dire
tory /www/do
s. This di-re
tory is prepended to ea
h request. Thus the given URL maps to the �le /www/do
s/index-t.html.The Web server also has a spe
ial rule for requests ending in a \/". These requests appearto be dire
tories, but the Web server appends the �le index.html on to the end of theserequests. Thus a request for /News/ should map to the �le /www/do
s/News/index.html.You should simply ignore all requests that do not map to a regular �le after following thegiven mapping rules. Web servers have other mapping rules, but these are the only two wewill use in this proje
t.Your server should be started up giving a port number on the 
ommand line. Portnumbers up to 1024 are reserved so use a port number (16-bit integer) larger than this value.If you re
eive a \bind failed" error then another server (perhaps one of your's!) is 
urrentlybound to that port. You may also see this error message if you try to restart your serverimmediately after it has just exited. The Unix operating system uses a short time limit (30se
s?) in whi
h it refuses to let a new pro
ess bind to a port that has just been used.In the simplest form your server should be a single pro
ess that a

epts a 
onne
tion usinga

ept(), re
eives the request and its headers then sends a response header and 
ontent ba
kto the 
lient. The server then 
loses the so
ket 
onne
tion used for handling this request.HTTP RequestYour server �rst needs to handle an HTTP request. The following is an example requestgenerated by a real browser for /index-t.html lo
ated on 


1.wpi.edu at port 4242. The�rst line of the request 
ontains the type of request (you only need to handle GET, but other1



types su
h as HEAD and POST are possible in HTTP). Following the GET request is the obje
tto be requested. You will �rst want to ensure that the request is of type GET and thenextra
t the obje
t string. The remainder of the line identi�es the HTTP version used by thebrowser. You 
an ignore the HTTP version. The remaining lines are HTTP request headers.In HTTP/1.1, the Host �eld is required, but you 
an ignore this line and all other headers.However, your server needs to read these headers.GET /index-t.html HTTP/1.0Conne
tion: Keep-AliveUser-Agent: Mozilla/4.7 [en℄ (X11; U; SunOS 5.7 sun4u)Host: 


1.wpi.edu:4242A

ept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*A

ept-En
oding: gzipA

ept-Language: enA

ept-Charset: iso-8859-1,*,utf-8To aid you in reading the request a line at a time, the routine so
kreadline() has been
reated and put in the �le /
s/
s502/publi
/example/so
kreadline.
, whi
h you arewel
ome to 
opy and use. This routine re
eives a 
hara
ter at a time from a given so
ketand stores these 
hara
ters in a NULL-terminated 
hara
ter bu�er. It returns when thenewline (\n) 
hara
ter is rea
hed.Note that the HTTP spe
i�
ation expe
ts all lines to be terminated with a CR (
arriagereturn) and LF (line feed) 
hara
ters. These 
hara
ters are \\r\n" in C/C++. Note alsothat the HTTP spe
i�
ation expe
ts a \blank" line 
ontaining only \\r\n" at the end of therequest headers. Your server should keep reading lines until it re
eives su
h a line.HTTP ResponseThere are a number of HTTP response 
odes, but for this proje
t we will use only two: 200and 404. If you re
eive a GET request for an obje
t that 
an be su

essfully mapped to a�le then you should open this �le for reading using the system 
all open(). If you su

essfullyopen the �le then your server should �rst send the HTTP response \HTTP/1.0 200 OK\r\n\r\n"indi
ating su

ess followed by a blank line. Note that two sets of CR/LF 
hara
ters are sent.Subsequently you should use read() to read all 
ontent from the �le and send it on to theserver. Use 
lose() to 
lose the �le when done reading and 
lose the so
ket 
onne
tion. Yourserver is done handling this request. Note that you should use these system 
alls for I/Orather than use routines expe
ting only text as the obje
t 
ontents may not be text.If the request is not valid or 
annot be mapped to a �le that is su

essfully opened thenyour server should send ba
k to the 
lient the response \HTTP/1.0 404 Not Found\r\n\r\n"indi
ating failure and 
lose the so
ket 
onne
tion.
2



Client TestingTo test your server, you 
an use a standard browser. However, to make testing simpler andto be able to see the response headers, you should 
reate a simple Web 
lient. This 
lientshould 
onne
t to a given port on a given host and send a minimal request string. Use
ommand line arguments to 
ontrol your 
lient. For example:% web
lient 


1 4242 /index-t.html
an be used to request the obje
t from port 4242 on the ma
hine 


1. Your simpleweb
lient will need to 
onne
t to the port and send the GET line (ending in CR/LF) followedby a blank line with CR/LF. You 
an use \HTTP/1.0" as the version. Your 
lient shouldthen re
eive ba
k the response headers and 
ontent from the server and print them to stdout.Beware of requesting images with your simple 
lient as the 
ontent will likely will not printwell. You should also be able to use your Web 
lient with any Web server by sending to thestandard Web server port 80.Completing a simple server and a simple 
lient and verifying they both work for HTML
ontent is worth 20 out of 30 points for the proje
t.Multi-Pro
ess ServerFor an additional �ve points on the proje
t, you should modify your Web server to fork o�a pro
ess to handle ea
h request. The 
hild pro
ess will use the so
ket value returned bya

ept() to handle all intera
tion with the 
lient while the parent pro
ess loops ba
k waitingto a

ept additional 
onne
tions. This approa
h will allow requests to be handled in parallelby the server.Wat
h out for this approa
h as the parent and 
hild pro
esses should be sure to 
loseso
ket 
onne
tions they are not using. Also be sure to insert 
ode to 
leanup \zombie"pro
esses that are left after the 
hild pro
esses terminate. Use wait3() to do so su
h as thefollowing 
ode that 
olle
ts status information. See the man page for additional information.int pid;int status;stru
t rusage ruse;while ((pid = wait3(&status, WNOHANG, &ruse)) > 0);You 
an either do this in your main server 
ode or in a signal handler, but in the latter
ase a

ept() will return an error indi
ating an interrupted system 
all (EINTR), whi
h youneed to 
he
k for.Your server should support either forking or non-forking. Use a 
ommand line argument(default is non-forking) to indi
ate whi
h approa
h to use. For example:% webserver 4242 forkis used to start your server on port 4242 with the forking option. Use \none" or leaveout the last argument to indi
ate a non-forking server.3



Multi-Threaded ServerFor the remaining �ve points of the proje
t, enhan
e your server to also support threads. Inthis version only one pro
ess is used, but a new thread is spawned to handle ea
h request.The main thread will loop ba
k to a

ept additional requests. Remember that so
kets areshared amongst all threads so spawned threads should not 
lose the so
ket used by themain thread for a

epting 
onne
tions. Also remember that all threads run in the sameaddress spa
e so that the use of shared bu�ers/variables or non-reentrant routines will 
auseproblems.Use the 
ommand-line argument \thread" to indi
ate your Web server is running inmulti-threaded mode.Performan
e TestingIf you implement more than one server version you should do some performan
e testing tosee how many requests ea
h approa
h 
an handle. A simple test is to repeatedly request thesame Web obje
t from the server. You 
an use your Web 
lient to test, but you will need torun multiple versions. Alternately you 
an use a web server testing tool.SubmissionEle
troni
ally turn in the 
ode for proje
t using the proje
t name proj4. You should in
lude aMake�le for 
ompiling \webserver" and \web
lient". The �le Makefile in /
s/
s502/publi
/example
an be used to 
ompile the so
k
lient and so
kserver examples given in 
lass. You 
an startwith this make�le and modify it appropriately. Make sure you use a TAB 
hara
ter to indentthe operations for a target as is done in the given �le Makefile.

4


