CS 502 Operating Systems WPI, Fall 2003
Craig E. Wills Project 2 (30 pts)
Assigned: Monday, September 22, 2003 Due: Monday, Octake2d03

| ntroduction

The use of threads allows for easy sharing of resourcesmatprocess with mechanisms such as
mutex locks and semaphores for coordinating the actionseottreads within the process. In this
project you will use these facilities to build a message ipgssiechanism that can be used among
a set of threads within the same process. You will use thditfasiof the pthreads() library for
thread and synchronization routines.

To exercise these routines you will first build a multi-thded program to add up a range of
numbers. Once working the primary purpose of the project ibuild a game of life program
where work is distributed among a set of threads.

Problem

The basic idea of this assignment is to create a number afder@nd to associate with each thread
a “mailbox” where a single message for that thread can bedtoBecause one thread may be
trying to store a message in another’s mailbox that alreatyains a message, you will need to
use semaphores in order to control access to each threatt®ma he number of threads in your
program should be controlled by an argument given on the camanfine to your program (use
atoi() to convert a string to an integer). You should use the coh88KTHREAD with a value of

10 for the maximum number of threads that can be created.

The parent thread in your program will be known as “thread @hwhreads 1 to the number
given on the command line being threads created using theeqthread create(). In creating
the threads, your program will need to remember the threastacked in the first argument to
pthread_create() for later use.

Associated with each thread is a mailbox. A mailbox containsessage that is defined by the
following C/C++ structure:

struct nmeg {
int iFrom [/* who sent the nmessage (0 .. nunber-of-threads) */
i nt type; /[* its type */
int valuel, /* first value */
int value2; /* second value */

b

Notice that the identifiers used in messages are in the rangeti®e number of threads.
We will call this the “mailbox id” of a thread to distinguish from the thread id returned by
pthread_create(). In the first part of the project the type of the message cdreelieRANGE or
ALLDONE as defined below.

#defi ne RANGE 1
#defi ne ALLDONE 2



Because each thread has one mailbox associated with it,hgudsdefine an array of mail-
boxes (of lengtiVAXTHREAD+1) to store one message for each potential thread. Because mai
boxes must be shared by all threads this array must be definadyibal variable. Alternately,
you can dynamically allocate only enough space for the numbtreads given on the command
line.

Similarly, semaphores should be created to control acoessah mailbox. These semaphores
should be created using the routisen_init() that is available by linking with the “rt” library in
Unix/Linux. These semaphores should also be created byairethread before it creates the other
threads. All creation of semaphores for the mailboxes shbeldone in the routinkitMailbox(),
which you need to write.

To handle access to each thread’s mailbox you must write twoedures:SendMsg() and
RecvMsg(). These procedures have the following interfaces

SendMsg(int iTo, struct nsg *pMsg) // nsg as ptr, C Ct+
SendMsg(int iTo, struct nsg &\VsQ) /'l msg as reference, C++
/* i To - mail box to send to */

/* pMsg - nessage to be sent */

RecvMsg(int i From struct nsg *pMsg) // msg as ptr, C C++
RecvMsg(int i From struct nmsg &Wsg) // nsg as reference, C++

/* i From- mailbox to receive from*/

/* pMsg/ Msg - nessage structure to fill in with received nessage */

The index of a thread is simply its number so the index of themiathread is zero, the first created
thread is one, etc. Each thread must have its own index.SBh@Msg() routine should block if
another message is already in the recipient’s mailbox. 18ini the RecvMsg() routine should
block if no message is available in the mailbox.

Part |

After setting up the mailboxes and creating the threads poagram will need to exercise these
routines. As a simple test, you will use multiple threadsdd ap the numbers between one and
an integer given on the command line. Once a thread is creiatgtbuld wait for a message of
type RANGE from the parent thread (mailbox id 0) by calliRgcvMsg() with its mailbox id as the
first argument. When it receives such a message, the chdddhshould add the numbers between
valuel and value2 and return the result to the parent thraachwnessage of typalL LDONE. The
routinepthread_exit() can be used to terminate a thread before the end of the codedflre.

Once the parent thread has receivdd DONE responses from all created threads, it should
print the summary total of all response and wait for eachterktiiread to complete usipghread_join().
Once each thread has completed the parent should clean @plseras it has created and termi-
nate.

The solution to the first part of the project should be caliddem with a sample invocation
shown below.

addem 10 100
The total for 1 to 100 using 10 threads is 5050.

2



Routines

In summary, the routines you must write with the given irdeef.
e InitMailbox() — return 0 on success, -1 on failure. Initims semaphores.

e CleanupMailbox() — return O on success, -1 on failure. Gdagnall semaphores. Should be
called whenever the parent thread exits.

e SendMsg(iTo, pMsg) — sends the message to the destinatidimoma

e RecvMsg(iFrom, pMsg) — receives a message from the souritbarna

Part I1: John Conway’s Game of Life

Successful completion of part | of the project is worth 15he 80 project points. For the second
part of the project, you should save a copy of your part | caw rmodify it for part Il. Part Il,
which should be calletfe, will play a distributed version of the Game of Life.

The Game of Life was invented by John Conway. The originatlartescribing the game can
be found in the April 1970 issue of Scientific Americdnt € p: / / ww. sci am cont ), page
120. The game is played on a grid of cells, each of which hd# egjghbors (adjacent cells). A
cell is either occupied (by an organism) or not. For boundases, assume cells outside of the
grid are unoccupied. The rules for deriving a generatiomftbe previous one are these:

e Death. If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupiedghtmirs, the organism dies (0
or 1 of loneliness; 4 thru 8 of overcrowding).

e Survival. If an occupied cell has two or three neighbors,dfganism survives to the next
generation.

e Birth. If an unoccupied cell has three occupied neighbois¢omes occupied.

Once started with an initial configuration of organisms (&ation 0), the game continues
from one generation to the next until one of three conditismset for termination:

1. all organisms die, or
2. the pattern of organisms is unchanged from one genenatithe next, or
3. apredefined number of generations is reached.

The straightforward way in which to implement the progrartoisnaintain two separate two-
dimensional arrays for even and odd generations. Thesescaraimtained as global variables. For
the project you should define a variabBXGRI D as the maximum number of rows or columns in
the grid. MAXGRI D should be set to 40.



Distributed Version

The distributed version of the game follows the same ruleh@astandard game, but rather than
have a single-threaded process evaluate all cells for eachrgtion, a distributed version will
use multiple threads to perform the work. This approachaouprove performance on a multi-
processor, but introduces added complexity on synchnogitie activities of the threads.

You will use thread 0 to coordinate the activities of one orenaorker threads, which are
actually doing the work of playing the game. Each workerddreomputes the new generation
of the game for an assigned range of rows as initially specifiethread 0. The number of rows
assigned to each thread by thread 0 should be roughly eqét& @ach generation, each thread
reports results back to thread 0 and waits faB@message from thread O before continuing to
the next generation. The message types needed for the prageadefined below along with the
algorithm for each worker thread on how they are used.

#defi ne RANGE 1

#defi ne ALLDONE 2

#define GO 3

#defi ne STOP 4

#defi ne ALLZERO 5

#define STATIC 6

#define GENDONE 7 // Generation Done

Recei ve RANGE nessage fromthread 0 to obtain range of rows.
for (gen = 1; gen <= cCGen; gen++) {
Recei ve nessage fromthread O.
If type is STOP then exit the thread.
If type is GO then play a generation of the gane on the thread’s
portion of rows.
If portionis all zeros then send ALLZERO nessage to thread O.
If portion is unchanged then send STATIC nessage to thread O.
O herwi se send GENDONE nessage to thread O.

}
Send ALLDONE nessage to thread O.

Thread 0 controls when each generation of the game is plasied GO messages to ensure
that all threads have played a generation before procedditite next generation. There is no
specific order in which worker threads must play each geimeraEach thread must only update
the cells for its range of rows, but for rows adjacent to tifos@another thread it is fine for a thread
to read the values of cells in rows outside of its range.

It is the responsibility of thread 0 to decide when the gandoise using the termination rules
previously specified. Thread 0 must combine the results lfov@ker threads to decide if the
game is done in which case it sendSBOP message to all threads or if the game is not done in
which case it sends@ message to all. Be careful in combining the respective tefdm each
thread because even though one thread may have no or gttt may not be the case for the
regions of all threads.



The file containing Generation 0 will be an ASCII file consigtiof a sequence of 0’s and 1's
indicating whether a cell is vacant or not. There will be agBnspace between each digit. For
example, if the file contains

0100
0011
1000

then the world consists of three rows and four columns. Yoagmam should ensure that neither
the number of rows nor columns exce@dsXGRI D. If so it should print a message and terminate.
Your program should accept 3-5 command line arguments Wwélidllowing syntax:

life threads fil enanme generations print input
with the following meaning:
e threads: number of threads with valiie MAXTHREAD.

¢ filename: file containing generation 0. Note that if the gatien contains fewer rows than
the given number of threads, you should set the number dddisre the number of rows so
each thread has at least one row to work on.

e generations: the maximum number of generations to play avithlue greater than zero.

e print: an optional argument with value of “y” or “n” on whetheach generation (including
generation 0) should be printed before proceeding to thegeneration. The default value
is “n”.

e input: an optional argument with value of “y” or “n” on whethleeyboard input should be

required before proceeding to the next generation. Thauttefalue is “n”.

Regardless of whether intermediate generations are gdrititieead O should print the total num-
ber of generations and final configuration before waitingalbthreads to complete and cleaning
up semaphores. An example invocation with the previous elamsed for contents of “gen0”
would be:

life 3 gen0 10 y
Ceneration O

0100
0011
1000
Generation 1:
00O00O
0110
00O00O

The gane ends after 2 generations wth:
00O00O
00O00O
00O00O



Part I11: The Gameof Lifewith aBarrier Implementation

Successful completion of parts | and Il of the project arettv@@ of the 30 project points. For the
third part of the project, you should save a copy of part Il arehte a program calldshrrierlife.

In this part, the input and output for the project are the sasgart 11, but the implementation will
differ to not use message passing rather you will be implementing and asiarrier.

A synchronization mechanism to coordinate the actions afoamof threads (or processes)
is abarrier. When a thread within the group reaches a synchronizatiant gihe barrier), it is
blocked until all threads have reached the barrier. Whethedads have reached the barrier then
they are all allowed to proceed.

For this part of the project you need to create three routines

e InitBarrier(N) - create a barrier for N threads. The valuéNofised should be equal to the
number of worker threads. This routine creates and irdgalineeded semaphores and/or
mutexes.

e Barrier() - blocks the calling thread until all N threads bagached the barrier point at which
time the routine returns for all threads.

e CleanupBarrier(N) - cleanup created semaphores and/@axesit

Successful implementation of these routines using pthegachronization primitives are worth
an additional four points. For the remaining four points ymed to modify your worker thread
algorithm to usao message passing. You should modify the creation of a threpdds the range
of rows for the thread to use. Waiting for a message at thenbetg of each loop should be re-
placed by a call to th8arrier() routine. You will need to create a distributed method for keor
threads to determine when the game is done. You may creait@adtishared variables, but you
may not use any message passing for this portion of the projec

Submission of Project

Use/ cs/ bi n/ t ur ni nto turn in your project using the assignment name “proj2"o@d have
separate source files faddem, life, and barrierlife. A Makefile with rules for creating each
executable is also expected.



