
CS 502 Operating Systems WPI, Fall 2003
Craig E. Wills Project 3 (20 pts)
Assigned: Monday, October 20, 2003 Due: Monday, November 10, 2003

Introduction

In this project you will be writing a program to compute the checksum of a file. Checksums are
used to characterize a string of data in a relatively few number of bytes. The better the checksum
algorithm, the more likely it is that unique strings of data map to unique checksums. One use of
checksums is to ensure that transmitted data is correctly received. While checksums are computed
in the project, they are not the focus of the project and hencewe will use a simple, computation-
ally inexpensive, checksum where all bytes in a file are XOR’ed together to calculate a one-byte
checksum. Your program should compute and print the checksum as an “unsigned” value.

Project

Given this introduction, the primary purpose of this project is to compare the performance of
standard file I/O using theread() system call for input with memory-mapped I/O where themmap()
system call allows the contents of a file to be mapped to memory. Access to the file is then
controlled by the virtual memory manager of the operating system. In both cases, you will need to
use theopen() andclose() system calls for opening and closing the file for I/O.

For the project, you should write a programxcheck that takes a file name as command-line
argument and computes an XOR checksum on the contents of the file. The only output from the
program should be the checksum itself. The default behaviorof the program should be to read
bytes from the file in chunks of 1024 bytes using theread() system call. However your program
should have an optional second argument that controls the chunk size for reading or to tell the
program to use memory-mapped file I/O. In the latter case yourprogram should map the entire
contents of the file to memory.

The syntax of your program:

xcheck srcfile [size|mmap]

wheresrcfile is the file on which to compute a checksum. If the optional second argument
is an integer then it is thesize of bytes to use on each loop when reading the file using theread()
system call. Your program should enforce a size limit of no more than 8192 (8K) bytes. Your
program should traverse the buffer of bytes read on each iteration and keep track of a “running”
checksum.

If an optional second argument is the literal string “mmap” then your program shouldnot use
theread() system call, but rather use themmap() system call to map the contents ofsrcfile to
memory. You should look at the man pages formmap() andmunmap() as well as the sample pro-
grammmapexample.c for help in using these system calls. Once your program has mapped the
file to memory then it should iterate through all bytes in memory to compute the XOR checksum.
You should verify that the file I/O and memory mapped options of your program compute the same
checksum for the same file as a minimal test of correctness.

1



Performance Analysis

Once you have your program functionally working for both types of I/O then you need to perform
an analysis to see which type of I/O works better for different size files. For this portion of the
project, you should reuse the first part of thedoit project, which allows you to collect system usage
statistics. The usage statistics of interest for this project are page faults, both major and minor, as
well as CPU time, both user and system. You may want to modify yourdoit program to print time
values at the microsecond level for finer detail. A sample invocation of yourxcheck program on
itself usingdoit with the largest read size would be the following wherexcheck prints the checksum
(your checksum will likely be different) and thendoit prints the resource usage statistics for the
program.

% doit xcheck xcheck 8192
The XOR checksum is 204
< resource usage statistics for xcheck process >

At the minimum, you must test your program running under five configurations for input files
of different sizes. The five configurations are standard file I/O with read sizes of 1, 1K, 4K, and
8K bytes as well as with memory mapped I/O. You should determine performance statistics for
each of these configurations on a variety of file sizes. As an aid in finding a range of file sizes,
the directory/var/log/ on the CCC machines has some large files such aslastlog orwlog.
You should look for other files with a range of sizes.

Once you have executed your program with different configurations on a range of files, you
should plot your results on a series of graphs where the file size is on the x-axis and the system
statistic of interest (e.g. major page faults or system time) is on the y-axis. Each graph should have
one line for the results of each configuration.

You should include these graphs as well as a writeup on their significance in a short (1-2 pages
of text) report to be submitted in hard copy format in class onthe due date. You should indicate
which configurations clearly perform better or worse than others on a given performance metric
and whether there is clearly a “best practice” technique to use.

Submission of Project

Use/cs/bin/turnin to turn in your project using the assignment name “proj3”. You should
submit the source code for yourxcheck program. A hard-copy report on performance results using
xcheck should be turned in at class time.

2


