Intel Core i7 Memory Hierarchy

Amanda Adkins, Brett Ammeson, James Anouna, Tony Garside, Lukas Hunker, Sam Mailand

Manufacturing process technology

Microarchitectures

Core i7 Basic Structure

- 4 cores
- Hyper threaded 8 threads
- Pipelined with 16 stages

Footprint

Major Developments

Intel's Move Into 3-D

The chip maker breaks from conventional approaches to make transistors.

Conventional transistor:

Electrons flow between components called a **source** and a **drain**, forming a two-dimensional **conducting channel**. A component called a **gate** starts and stops the flow, switching a transistor on or off. Intel's new transistor: A fin-like structure rises above the surface of the transistor with the gate wrapped around it, forming conducting channels on three sides. The design takes less space on a chip, and improves speed and reduces power consumption.

Increased Cache Bandwidth

Intel Core i7 Caching Basics

- Intel core i7 processors feature three levels of caching.
 - Separate L1 and L2 cache for each core.
 - L1 cache broken up into to halves, instruction/data.
 - L3 cache shared among all cores and is inclusive.

Figure 9.21 The Core i7 memory system.

Virtual Addressing

Virtual addresses

Physical addresses

Physical Addressing

2. Search for matching tag in the set

N-way set associativity (Review)

- Multiple entries per index
- Narrows search area needed to find unused slot
- ▶ i7 4790
 - ▶ L1 4x32 KB 8-way
 - ▶ L2 4/256 KB 8-way
 - L3 shared 8 MB 16-way

Intel's core i7 TLB design

- Memory cache that stores recent translations of virtual memory to physical addresses for faster retrieval.
- Uses a 2 level cache system
- L1 TLB
 - Divided into 2 parts
 - Data TLB: 64 4KB entries
 - Instruction TLB: 128 4KB entries

- L2 TLB (Services misses in L1 DTLB)
 - Can hold translations for 4KB and 2 MB pages (vs. only 4KB)
 - 1024 entries (vs. 512)
 - 8-way associative (vs. 4-way)

TLB Comparisons between generations

Nehalem

Cache		Page Size		
Name	Level	4 KB	2 MB	
DTLB	1st	64	32	
ITLB	1st	128	7 / logical core	
STLB	2nd	512	none	

Sandy	Bridge	and	lvy	Bridge
Casha	Dama	Cine	i	Haswell

Cache		Page Size			
Name	Level	4 KB	2 MB	1 GB	
DTLB	1st	64	32	4	
ITLB	1st	128	8 / logical core	none	
STLB	2nd	512	none	none	

Cad	che	Page Size		
Name	Level	4 KB	2 MB	1 GB
DTLB	1st	64	32	4
ITLB	1st	128	8 / logical core	none
STLB	2nd		1024	none

Pseudo-LRU (Intel's core i7 caching algorithm)

- One bit per cache line
- Resets after all lines' bit is set
- Lowest line index with a '0' replaced

- Port 2 and 3 are the Address Generation Units
- Port 4 for writing data from the core to the L1 Cache
- Additional port added to Haswell
- Haswell can sustain 2 loads and 1 store per cycle "under nearly any circumstances"
- Forwarding latency for AVX loads decreased from 2 to 1 cycle
- AVX: Set of instructions for doing SIMD operations on Intel CPUs
- 4 Split line buffers to resolve unaligned loads (vs 2 in Sandy-bridge)
- Decrease impact of unaligned access

AN X64 PROCESSOR IS SCREAMING ALONG AT BILLIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANTICALLY WORKING THROUGH ALL THE POSIX-SPECIFIED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERLYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A RASH OBJECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

> BECAUSE I WANTED TO SEE A CAT JUMP INTO A BOX AND FALL OVER.

I AM A GOD.

Haswell L1 Cache

- 32 kb
- 8 way associative
- Writeback
- TLB access & cache tag can occur in parallel
- Does not suffer from bank conflicts (unlike Sandy Bridge)
- Minimum latency: 4 cycles (same as Sandy-Bridge)
- Minimum lock latency of haswell is 12 cycles (sandy-bridge was 16)

Haswell L2 Cache

Bandwidth doubled

Can deliver 64 bit line to data or instruction cache every cycle

- 11 cycle latency
- 256 KB for each cache

Haswell L3 Cache

- Shared between all cores
- Size varies between models and generations between 6MB and 15MB
- Most Haswell models have an 8MB cache
- Size reduced for power efficiency

Shared Data

- Transactional Synchronization Extensions
 - Transactional memory
- Hardware Lock Elision
 - Backwards Compatible, Windows only
 - Uses instruction prefixes to lock and release
- Restricted Transactional Memory
 - Newer, more flexible
 - Fallback code in case of failure

Pre-fetching

- Fetch Instructions/Data before needed
 - On a miss 2 blocks are fetched
- If successful, miss will grab from buffer, and pre-fetch next block

Memory Hierarchy Access Steps

OR

Generation 5 (Broadwell)

- Currently mobile only (Lower power systems)
 - Two cores
- Shrunk to 14 nm
- Power Consumption down to 15 w
- No low-end desktop processors
- Extended instruction set

Which Processor Should a Buyer Choose?

Future Releases

Broadwell Desktop

- Many manufacturers plan to skip
- Possibly due to lack of low-end offerings

Skylake

Second half of 2015

Desktop Platform – Consumer Roadmap

Metric	Nehalem	Sandy Bridge	Haswell
L1 Instruction Cache	32K, 4-way	32K, 8-way	32K, 8-way
L1 Data Cache	32K, 8-way	32K, 8-way	32K, 8-way
Fastest Load-to-use	4 cycles	4 cycles	4 cycles
Load bandwidth	16 Bytes/cycle	32 Bytes/cycle (banked)	64 Bytes/cycle
Store bandwidth	16 Bytes/cycle	16 Bytes/cycle	32 Bytes/cycle
L2 Unified Cache	256K, 8-way	256K, 8-way	256K, 8-way
Fastest load-to-use	10 cycles	11 cycles	11 cycles
Bandwidth to L1	32 Bytes/cycle	32 Bytes/cycle	64 Bytes/cycle
L1 Instruction TLB	4K: 128, 4-way 2M/4M: 7/thread	4K: 128, 4-way 2M/4M: 8/thread	4K: 128, 4-way 2M/4M: 8/thread
L1 Data TLB	4K: 64, 4-way 2M/4M: 32, 4-way 1G: fractured	4K: 64, 4-way 2M/4M: 32, 4-way 1G: 4, 4-way	4K: 64, 4-way 2M/4M: 32, 4-way 1G: 4, 4-way
L2 Unified TLB	4K: 512, 4-way	4K: 512, 4-way	4K+2M shared: 1024, 8-way

All caches use 64-byte lines

Conclusion

- Why is it faster?
 - Increased Bandwidth
 - Doubled the associativity in L2 TLB
 - Tri Gate Transistors
- Smaller chip size
- Lower power requirements
 - Decreased L3 Cache Size

Questions?