

The Rise of Distributed Systems

- Computer hardware prices falling, power increasing
 - If cars did same, Rolls Royce would cost 1 dollar and get 1 billion miles per gallon (with 200 page manual to open door)
- Network connectivity increasing
 - Everyone is connected with "fat" pipes, even when moving
- It is easy to connect hardware together
 - Layered abstractions have worked very well
- Definition: a distributed system is "A collection of <u>independent computers</u> that appears to its users as a <u>single coherent system</u>"

Transparency in a Distributed S	ystem
---------------------------------	-------

Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Hide that a resource may be copied
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource
Persistence	Hide whether a (software) resource is in memory or on disk

(Different forms of transparency in a distributed system)

Scalability Problems

As systems grow, centralized solutions are limited
Consider LAN name resolution (ARP) vs. WAN

Concept	Example
Centralized services	A single server for all users
Centralized data	A single on-line telephone book
Centralized algorithms	Doing routing based on complete information

- Ideally, can collect information in distributed fashion and distribute in distributed fashion
- But sometimes, hard to avoid (e.g., consider money in a bank)
- Challenges: geography, ownership domains, time synchronization
- Scaling techniques? → Hiding latency, distribution, replication (next)

Scaling Technique: Replication

- Copy of information to increase availability and decrease centralized load
 - Example: File caching is replication decision made by client
 - Example: CDNs (e.g., Akamai) for Web
 - Example: P2P networks (e.g., BitTorrent) distribute copies uniformly or in proportion to use
- Issue: Consistency of replicated information
 - Example: Web browser cache or NFS cache how to tell it is out of date?

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

- NOS (Network Operating Systems)
- Middleware

(Next)

