Distributed Computing Systems

Overview of Distributed Systems

Andrew Tanenbaum and Marten van Steen, Distributed Systems — Principles and Paradigms, Prentice Hall, 2002

Outline

* Overview

* Goals

* Software

* Client Server

The Rise of Distributed Systems

Computer hardware prices falling, power increasing
— If cars did same, Rolls Royce would cost 1 dollar and get 1 billion
miles per gallon (with 200 page manual to open door)
Network connectivity increasing
— Everyone is connected with “fat” pipes, even when moving
It is easy to connect hardware together
— Layered abstractions have worked very well

Definition: a distributed system is
“A collection of independent computers that appears to its users as
a single coherent system”

Depiction of a Distributed System

Machine A Machine B Machine C
[[
Distributed applications
‘ i - The Web

- Processor pool
- Shared memory pool
- Airline reservation

‘ Local OS ‘ ‘ Local 0S8 ‘ ‘ Local OS ‘ - Network game

Network

‘ Middleware service

* Distributed system organized as middleware. Note that middleware layer extends
over multiple machines.

« Users can interact with system in consistent way, regardless of where interaction
takes place (e.g., RPC, memcached, ...

* Note: Middleware may be “part” of application in practice

4/15/2014

Transparency in a Distributed System

Transparency Description

Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource may be copied

Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

(Different forms of transparency in a distributed system)

Scalability Problems

¢ As systems grow, centralized solutions are limited
— Consider LAN name resolution (ARP) vs. WAN

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book

Doing routing based on complete

Centralized algorithms . X
information

« Ideally, can collect information in distributed fashion and distribute in
distributed fashion

* But sometimes, hard to avoid (e.g., consider money in a bank)

* Challenges: geography, ownership domains, time synchronization

* Scaling techniques? —> Hiding latency, distribution, replication (next)

Scaling Technique: Hiding
Communication Latency

e Especially important for interactive applications

e |f possible, do asynchronous communication — continue working so
user does not notice delay
- Not always possible when client has nothing to do

. Instead, can hide latencies

Client Server
FIRST NAME[MasRTEN]|
LAST NAME
EMAIL
El
Check form Process form
@
Client Server
FIRST NAME[VAARTEN]
LAST NAME Vit Sree
E-MAIL Stesges N
@
Check form Process form

(O]

Scaling Technique: Distribution

e Spread information/processing to more than one location

1. Root DNS Servers

il

com DNS servers org DNS servers edu DNS servers
\ 3 ? | polyg umass.edu
pbs.org - g
yahoo.com - camazon.com> DNS servers DNS serversDNS servers

DNS servers DNS servers

Client wants |P for www.amazon.com (approximation):

1. Client queries root server to find .com DNS server
2. Client queries . com DNS server to get amazon . com DNS server

3. Client queries amazon.comDNS server to get IP address for
WWW .amazon. com

4/15/2014

Scaling Technique: Replication

* Copy of information to increase availability
and decrease centralized load

— Example: File caching is replication decision made
by client

— Example: CDNs (e.g., Akamai) for Web

— Example: P2P networks (e.g., BitTorrent) distribute
copies uniformly or in proportion to use

* Issue: Consistency of replicated information

— Example: Web browser cache or NFS cache — how
to tell it is out of date?

Outline
e Overview (done)
* Goals (done)
* Software (next)

¢ Client Server

Software Concepts

System Description Main Goal

Tightly-coupled operating system for multi- Hide and manage

DOS .
processors and homogeneous multicomputers | hardware resources

Loosely-coupled operating system for Offer local services

NOS heterogeneous multicomputers (LAN and to remote dlients
WAN)

Middleware Additional layer atop _of NOS implementing Provide distribution
general-purpose services transparency

* DOS (Distributed Operating Systems)
* NOS (Network Operating Systems)
* Middleware

(Next)

Distributing Single-Computer
Operating Systems

* Separating applications from operating system code
with microkernel

No direct data exchange between modules

Al 4
OSinterface User Memory Process File module U "
application module module ser mode
E 1l A A
1= i = il
Kernel mode
System call Microkernel /
Hardware

Can extend to multiple computers (see next slide)

4/15/2014

Distributed Operating Systems

Machine A Machine B
|| LI

Distributed applications

Machine C

Distributed operating system services

Kernel Kernel Kernel

Network

* Typically, all hosts are homogenous
e But no longer have shared memory
— Can try to provide distributed shared memory

* But tough to get acceptable performance, especially for large requests
-> Provide message passing

Network Operating System

Machine A

Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
Network

¢ 0OSes can be different (Windows or Linux)

¢ Typical services: r
— Fairly primitive

login, rcp
way to share files

Network Operating System

File server
Client 1 Client 2 &= | Disks on which
shared file system
Request Reply =3 | is stored
Network

* Can have one computer provide files transparently for
others (NFS)

Network Operating System

Client 1 Client 2 Server 1 Server 2
I 1 games work
private pacman mail
pacwoman teaching
pacchild research
(a)
Client 1 Client 2
i 1
_—tegames o private/games
Vd work e~ / work e- ~
/ N [\
/ \

’ .

|

L 4
pacman mail pacman mail
pacwoman teaching pacwoman teaching
pacchild research pacchild research

(b)

(©

Different clients may mount the servers in different places
Inconsistencies in view make NOSes harder for users than DOSes
— But easier to scale by adding computers

4/15/2014

Positioning Middleware

e Network OS not transparent. Distributed OS not independent of

computers.
— Middleware can help

Machine A Machine B Machine C
[[
’ Distributed applications ‘
— —

’ Middleware services ‘
Network OS Network OS Network OS
services services services
‘ Kernel ‘ Kernel ‘ Kernel ‘

Network

¢ Often middleware built in-house to help use networked operating
systems (distributed transactions, better comm, RPC)
— Unfortunately, many different standards

Outline

Overview (done)
Goals (done)
Software (done)
Client Server (next)

Clients and Servers

* Thus far, have not talked about organization of processes
— Again, many choices but most widely used is client-server

Wait for result
Client

Request

Provide service

¢ If can do so without connection, quite simple
— If underlying connection is unreliable, not trivial
— Resend. What if receive twice?
e Use TCP for reliable connection (most Internet apps)

— Not always appropriate for high-speed LAN connection or
interactive applications

Client-Server Implementation Levels

Keyword expression

HTML page
containing list

Ranked list
of page titles

Ranking
component

Web page titles
with meta-information
Database

with Web pages

Example of Internet search engine
— Ul onclient
— Data level is server, keeps consistency
— Processing can be on client or server

N

User-interface
level

Processing
level

Data level

4/15/2014

Multitiered Architectures

Client machine

‘ User interface‘ ‘ User interface| | User interface‘ ‘ User interface ‘

| Application ‘ ‘ Application ‘

Database

User interface L —*f—$,,,,,w
‘ Application ‘ ‘ Application ‘ ’;prllcation | L »/,//'/
‘ Database ‘ ‘ Database ‘ ‘ Database | | Database ‘ ‘) Database ‘

Server machine

@ () © (C) (e)

Thin client (a) to Fat client (e)
— (a) is simple echo terminal, (b) has GUI at client
— (c) has user side processing (e.g., check Web form for consistency)
— (d) and (e) popular for NOS environments (e.g., server has files only)

Multitiered Architectures: 3 tiers

User interface Wait for result
(presentation) N T T T 4

Request
operation

Return
result
Wait for data

Applicaton __________°
server

Return data

Database
server . »

* Server(s) may act as client(s), sometimes
— Example: transaction monitor across multiple databases

* Also known as vertical distribution

Alternate Architectures: Horizontal

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests = = =T Disks
handledin _yt — |7/ —/ [] —
round-robin | = | &= /E_é/>

| fashion | T | |

s

w\f

Rather than vertical, distribute servers across nodes
— Example: Web server “farm” for load balancing

— Clients, too (peer-to-peer systems)

— Most effective for read-heavy systems

4/15/2014

