
4/15/2014

1

Distributed Computing Systems

Overview of Distributed Systems

Andrew Tanenbaum and Marten van Steen, Distributed Systems – Principles and Paradigms, Prentice Hall, c2002.

Outline

• Overview

• Goals

• Software

• Client Server

The Rise of Distributed Systems

• Computer hardware prices falling, power increasing

– If cars did same, Rolls Royce would cost 1 dollar and get 1 billion

miles per gallon (with 200 page manual to open door)

• Network connectivity increasing

– Everyone is connected with “fat” pipes, even when moving

• It is easy to connect hardware together

– Layered abstractions have worked very well

• Definition: a distributed system is

“A collection of independent computers that appears to its users as

a single coherent system”

Depiction of a Distributed System

• Distributed system organized as middleware. Note that middleware layer extends

over multiple machines.

• Users can interact with system in consistent way, regardless of where interaction

takes place (e.g., RPC, memcached, …

• Note: Middleware may be “part” of application in practice

Examples:
- The Web

- Processor pool

- Shared memory pool

- Airline reservation

- Network game

4/15/2014

2

Transparency in a Distributed System

(Different forms of transparency in a distributed system)

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource may be copied

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

Scalability Problems
• As systems grow, centralized solutions are limited

– Consider LAN name resolution (ARP) vs. WAN

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms
Doing routing based on complete

information

• Ideally, can collect information in distributed fashion and distribute in
distributed fashion

• But sometimes, hard to avoid (e.g., consider money in a bank)

• Challenges: geography, ownership domains, time synchronization

• Scaling techniques? � Hiding latency, distribution, replication (next)

Scaling Technique: Hiding

Communication Latency
• Especially important for interactive applications

• If possible, do asynchronous communication – continue working so
user does not notice delay

- Not always possible when client has nothing to do

• Instead, can hide latencies

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Scaling Technique: Distribution

Client wants IP for www.amazon.com (approximation):

1. Client queries root server to find .com DNS server

2. Client queries .com DNS server to get amazon.comDNS server

3. Client queries amazon.comDNS server to get IP address for

www.amazon.com

?

1.

2.

3.

• Spread information/processing to more than one location

4/15/2014

3

Scaling Technique: Replication

• Copy of information to increase availability
and decrease centralized load
– Example: File caching is replication decision made

by client

– Example: CDNs (e.g., Akamai) for Web

– Example: P2P networks (e.g., BitTorrent) distribute
copies uniformly or in proportion to use

• Issue: Consistency of replicated information
– Example: Web browser cache or NFS cache – how

to tell it is out of date?

Outline

• Overview (done)

• Goals (done)

• Software (next)

• Client Server

Software Concepts

• DOS (Distributed Operating Systems)

• NOS (Network Operating Systems)

• Middleware

System Description Main Goal

DOS
Tightly-coupled operating system for multi-
processors and homogeneous multicomputers

Hide and manage
hardware resources

NOS
Loosely-coupled operating system for
heterogeneous multicomputers (LAN and
WAN)

Offer local services
to remote clients

Middleware
Additional layer atop of NOS implementing
general-purpose services

Provide distribution
transparency

(Next)

Distributing Single-Computer

Operating Systems
• Separating applications from operating system code

with microkernel

Can extend to multiple computers (see next slide)

4/15/2014

4

Distributed Operating Systems

• Typically, all hosts are homogenous

• But no longer have shared memory

– Can try to provide distributed shared memory

• But tough to get acceptable performance, especially for large requests

� Provide message passing

Network Operating System

• OSes can be different (Windows or Linux)

• Typical services: rlogin, rcp

– Fairly primitive way to share files

Network Operating System

• Can have one computer provide files transparently for
others (NFS)

Network Operating System

• Different clients may mount the servers in different places

• Inconsistencies in view make NOSes harder for users than DOSes

– But easier to scale by adding computers

4/15/2014

5

Positioning Middleware
• Network OS not transparent. Distributed OS not independent of

computers.

– Middleware can help

• Often middleware built in-house to help use networked operating

systems (distributed transactions, better comm, RPC)
― Unfortunately, many different standards

Outline

• Overview (done)

• Goals (done)

• Software (done)

• Client Server (next)

Clients and Servers
• Thus far, have not talked about organization of processes

– Again, many choices but most widely used is client-server

• If can do so without connection, quite simple

― If underlying connection is unreliable, not trivial

― Resend. What if receive twice?

• Use TCP for reliable connection (most Internet apps)

― Not always appropriate for high-speed LAN connection or
interactive applications

Client-Server Implementation Levels

• Example of Internet search engine

– UI on client

– Data level is server, keeps consistency

– Processing can be on client or server

4/15/2014

6

Multitiered Architectures

• Thin client (a) to Fat client (e)
– (a) is simple echo terminal, (b) has GUI at client
– (c) has user side processing (e.g., check Web form for consistency)
– (d) and (e) popular for NOS environments (e.g., server has files only)

Multitiered Architectures: 3 tiers

• Server(s) may act as client(s), sometimes
– Example: transaction monitor across multiple databases

• Also known as vertical distribution

Alternate Architectures: Horizontal

• Rather than vertical, distribute servers across nodes
– Example: Web server “farm” for load balancing
– Clients, too (peer-to-peer systems)
– Most effective for read-heavy systems

