Distributed Computing Systems

File Systems

Motivation — Process Need

¢ Processes store, retrieve information

* When process terminates, memory lost

* How to make it persist?

¢ What if multiple processes want to share?

* Requirements: registers st
— large Solution? Disks rpensive
— persistent are large,

i I
— concurrent access persistent!

disks

cheap
sl

tape low

Motivation — Disk Functionality (1 of 2)

| bs—boot sector |
i sb—super block

+ Sequence of fixed-size blocks
» Support reading and writing of blocks

Motivation — Disk Functionality (2 of 2)

* Questions that quickly arise
— How do you find information?
— How to map blocks to files?

— How do you keep one user from reading another’s
data?

— How do you know which blocks are free?

Solution? File Systems

3/25/2014

QOutline

Files (next)
Directories

Disk space management

Misc

Example systems

File Systems

* Abstraction to disk (convenience)

— “The only thing friendly about a disk is that it has
persistent storage.”

— Devices may be different: tape, USB, IDE/SCSI, NFS
* Users

— don’t care about implementation details

— care about interface
* OS

— cares about implementation (efficiency and
robustness)

File System Concepts

Files - store the data

Directories - organize files

Partitions - separate collections of directories (also
called “volumes”)

— all directory information kept in partition

— mount file system to access

Protection - allow/restrict access for files, directories,
partitions

Files: The User’s Point of View

* Naming: how does user refer to it?
* Example: blah, BLAH, Blah
— Does case matter?

— Users often don’t distinguish, and in much of Internet no
difference (e.g., email), but sometimes (e.g., URL path)

— Windows: generally case doesn’t matter, but is preserved
— Linux: generally case matters

¢ Example: file.c, file.com
— Does extension matter?

— Software may distinguish (e.g., compiler for . cpp, Windows
Explorer for application association)

— Windows: explorer recognizes extension for applications

— Linux: extension ignored by system, but software may use
defaults

3/25/2014

Structure

* What’s inside?
a) Sequence of bytes (most modern OSes (e.g.,
Linux, Windows))
b) Records - some internal structure
c) Tree - organized records

1 Byte 1 Record

[Laot [T Fox J P |

” Cat || Cow || Dog || ” Goat || Lion || owl || || Pony || Rat "Worm”

[[ten [s eamo]

(a) (b) ©

Type and Access

* Type:
— ascii - human readable
— binary - computer only readable
— Allowed operations/applications (e.g., executable, c-file ...)
(via “magic number” or extension)
* Access Method:

— sequential (for character files, an abstraction of I/0 of
serial device such as modem)

— random (for block files, an abstraction of 1/0 to block
device such as a disk)

Common Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator 1D of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up
ASClI/binary flag 0 for ASCII file; 1 for binary file
Random access flag | 0 for access only; 1 for random access
Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record
Key position Offset of the key within each record
Key length Number of bytes in the key field
Creation time Date and time the file was created
Time of last access | Date and time the file was last accessed
Time of last change | Date and time the file was last changed
Current size Number of bytes in the file
Maximum size Number of bytes the file may grow to

System Calls for Files

* Create * Seek

* Delete * Get attributes
Set attributes
* Open * Rename

* Read

* Write

* Append

* Truncate

3/25/2014

Example: Program to Copy File

/= File copy program. Error checking and reporting is minimal, */

#include <sys/types.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv(]);

#define BUF _SIZE 4096
#define OUTPUT MODE 0700

/* include necessary header files */

/= ANSI prototype */

J+ use a buffer size of 4096 bytes +/

/= protection bits for output file */

Example: Program to Copy File

/= Copy loop */

while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); / read a block of data */

if (rd_count <= 0) break; /= if end of file or error, exit loop */
wit_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= Q) exit(4); /* wt_count <= 0 is an error */

)

int main(int arge, char *argv])

intin_fd, out fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc 1= 3) exit(1); /+ syntax error if argc is not 3 +/

/+ Open the input file and create the output file +/

in_fd = open(argv{1], O_RDONLY); /» open the source file */

if (in_fd < 0) exit(2); « if it cannot be opened, exit +/
out_fd = creat(argv[2], OUTPUT MODE); /* create the destination file */
if (out_fd < 0) exit(3): « if it cannot be created, exit */

/* Close the files */

close(in _fd);

close(out _fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Zoom in on open () system call

Example: Unix open ()
int open(char *path, int flags [, int mode])

* path is name of file

* flags is bitmap to set switch
— O_RDONLY, O_WRONLY, O_TRUNC ...
— O_CREATE then use mode for permissions

* success, returns index

Unix open () - Under the Hood

int fid = open(“blah”, flags);
read (fid, ..);

User Space

System Space

0
1
2
é 3
File Structure |——>
(where
block:
(index) (attributes) ocks are)
(Per process) (Per device)

3/25/2014

Example: Windows CreateFile ()

* Returns file object handle:
HANDLE CreateFile (
1pFileName, // name of file
dwDesiredAccess, // read-write
dwShareMode, // shared or not
1pSecurity, // permissions

)

* File objects used for all: files, directories,
disk drives, ports, pipes, sockets and
console

File System Layout

e BIOS reads in program (“bootloader”, e.g., grub) in Master
Boot Record (MBR) in fixed location on disk

¢ MBR has partition table (start, end of each partition)
¢ Bootloader reads first block (“boot block”) of partition
¢ Boot block knows how to read next block and start OS

¢ Rest can vary. Often “superblock” with details on file system
— Type, number of blocks,...

Entire disk

Partition table Disk partition \

[wer [[[]
7 ——
(or GPT —
— T~
see next) - ~—
| Boot block | Superblock | Free space mgmt I-nodes Root dir Files and directories ‘

MBR vs. GPT

MBR = Master Boot Record

GPT = Guid Partition Table

Both help OS know partition structure of hard
disk

Linux — default GPT (must use Grub 2), but can
use MBR

Mac — default GPT. Can run on MBR disk, but
can’t install on it

Windows — 64-bit support GPT. Windows 7
default MBR, but Windows 8 default GPT

Master Boot Record (MBR)

* Old standard, still widely in e
use 1st Paéh;‘yjh?;‘ Table
* At beginning of disk, hold o

Master - Partition

information on partitions

* Also code that can scan for
active OS and load up boot

3rd Partition Table
Entry

4th Partition Table
Entry

0xS5 AA

code for OS Primary Partition (C:)
* Only 4 partitions, unless 4" primary artion €9
is extended
* 32-bit, so partition size Primars parition (£
limited to 2TB Logical Drive (G:)
* If MBR corrupted 2> Extended | | Logical Drive (H:)
trouble! Partition

Logical Drive n

3/25/2014

GUID Partition Table (GPT)

* Newest standard

GUID Partition Table Scheme

* GUID = globally unique

* Protective MBR layer for

identifiers — rarzeaani
* Unlimited partitions (but ok aeolewdnolray ;
most OS limit to 128) NN
« Since 64-bit, 1 billion TB
partitions (Windows limit
256 TB) Parttian2
* Backup table stored at end
* CRC32 checksums to detect N, Remaining Partitions T\
errors i::;: T) G)
.

L8A -2

Entries 5-128

apps that don’t know about

§
BA-L [_secondary cPT veader | :

GPT

File System Implementation

Process Open File File Descriptor Disk
Control Block Table Table
Copy fd
to mem
Open
File
Pointer
Array
(per process) (in memory
copy,
one per
device)

Example — Linux (1 of 3)

Each task_struct describes a process

/* /usr/include/linux/sched.h */
struct task_struct {

volatile long state;

long counter;

long priority;

struct files_struct *files;

Example — Linux (2 of 3)

The files_struct data structure describes files
process has open

/* /Jusr/include/linux/fs.h */
struct files_struct {

int count;

fd_set close_on_exec;

fd_set open_fds;

struct file *fd[NR_OPEN];
}s

3/25/2014

Example — Linux (3 of 3)

* Each open file is represented by a file data structure

struct file {
mode_t f_mode;
loff_t f_pos;
unsigned short f_flags;
unsigned short f_count;
unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
struct file *f_next, *f_prev;
int f_owner;
struct inode *f_inode;
struct file_operations *f_op;
unsigned long f_version;
void *private_data;

/* file descriptor */

s

File System Implementation

* Which blocks with which file?

* File descriptor implementations:
— Contiguous
— Linked List
— Linked List with Index
— |-nodes

File Descriptor

Contiguous Allocation (1 of 2)

* Store file as contiguous block

— ex: w/ 1K block, 50K file has 50 consec. blocks
File A: start 0, length 2
File B: start 14, length 3

* Good:
— Easy: remember location with 1 number
— Fast: read entire file in 1 operation (length)
* Bad:
— Static: need to know file size at creation
* Or tough to grow!

— Fragmentation: remember why we had paging in
memory?

Contiguous Allocation (2 of 2)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
——— e —
TT T I T T T T I T T T T T T T T T T T T T T I 7T

[— - -
File B FileD File F
(3 blocks) (5 blocks) (6 blocks)
(a)

(File A) (File C) (File E) (File G)
—— ——— —_—— ——
(HEEEENSEEEENEESEEEEEEESEENEEEEEEEEN|

JE— — -
File B 5 Free blocks 6 Free blocks
(b)
a) 7 files

b) 5 files (file D and F deleted)

3/25/2014

Linked List Allocation
* Keep linked list with disk blocks

Physical
Block

* Good:
— Easy: remember 1 number (location)
— Efficient: no space lost in fragmentation

e Bad:
— Slow: random access bad

Linked List Allocation with Index

Larect blocks I_node

Luable udinec,

lrdirextblacks Hesks

inode

Icfos

i
_ * Fast for small files
* Can hold large files
=

¢ Typically 15 pointers * Pointers per block? Depends upon
— 12 to direct blocks block size and pointer size

— 1 single indirect * E.g., 1k byte block, 4 byte pointer 2>
singe ”.1 |r.ec each indirect has 256 pointers
— 1 doubly indirect .
— 1 triply indirect * Maxsize? Same.
Pl * E.g., 4KB block = max size 2 TB

Physical
Block
0 * Table in memory
1 — MS-DOS FAT, Win98 VFAT
2 — faster random access
3 — can be large! E.g., 1 TB disk, 1 kB
4 blocks
s * Table needs 1 billion entries
. * Each entry 3 bytes (say 4 typical)
- 4 GB memory!
7
Common format still (e.g., USB drives) since
supported by many OSes
Outline
* Files (done)
* Directories (next)

Disk space management
Misc
Example systems

3/25/2014

Directories

Just like files
— Have data blocks
— File descriptor to map which
blocks to directory
But have special bit set so user Rsot dirsctory
process cannot modify
contents

— data in directory is information / links
to files

— modify only through system call

— (See 1ls.c)
Organized for:

— efficiency - locating file quickly

— convenience - user patterns

e groups(.c, .exe), same names

Tree structure, directory the
most flexible

— User sees hierarchy of directories

System Calls for Directories

+ Create * Readdir
* Delete * Rename
* Opendir « Link

* Closedir * Unlink

Directories

» Before reading file, must be opened

* Directory entry provides information to get
blocks

— disk location (blocks, address)

* Map ascii name to file descriptor

l b l

lock numbers

Where are attributes stored?

Options for Storing Attributes

a) Directory entry has attributes (Windows)

b) Directory entry refers to file descriptor (e.g., i-
node), and descriptor has attributes (Unix)

games attributes games 1 :]
mail attributes mail S

news attributes news ~\[:]
work attributes work d

(a) (b) 1 Data structure
containing the

attributes

3/25/2014

Windows (FAT) Directory

¢ Hierarchical directories

* Entry:
—name - date
—type (extension) - block number (w/FAT)
—time

Unix Directory

* Hierarchical directories
— name
—i-node number (try “1s —-i”or “ls —-iad .”)
* Example, say want to read data from below file
/usr/bob/mbox
Want consents of file, which is in blocks
Need file descriptor (i-node) to get blocks
How to find the file descriptor (i-node)?

Unix Directory Example

Root Directory Block 132

Block 406

I-node 6 I-node 26

Aha!

Looking up

N I-node 60
Looking up bob gives has contents
usr gives Content‘s of I-node 26 Contents of of mbox
I-node 6 usrin bob in

block 132 block 406

Length of File Names

* Above, each directory entry is name (and

attributes) plus descriptor

* How long should file names be?
* If fixed small, will hit limit (users don’t like)
* If fixed large, may be wasted space (internal

fragmentation)

* Solution = allow variable length names

3/25/2014

10

Handling Long Filenames

File 1 entry length {- Pointer to file 1's name ‘ Entry
> for one
File 1 attributes File 1 attributes J file
Entry - 5 - v
forone ¢ P i Pointer to file 2's name |
file e c t -
b u d 9 File 2 attributes
e t X Pointer o file 3's name

File 2 entry length

File 3 attributes
File 2 attributes

P e v s
o n n °
! X P r o i
File 3 entry length e c t -
b u d g
File 3 attributes s n = b
Heap
flolo[X e [r [s o
n e |
: f 3 o
X
(@) (b)

a) Compact (all in memory, so fast) on word boundary
b) Heap tofile

Same File in More than One Location

(Instead of tree,
really have
directed acyclic

. graph)
“alias”

* Possibilities for the “alias”:
I. Directory entry containsdisk
blocks? i Will review each

Il. Directory entry points to i implementation
attributes structure? 1 choice, next

Ill. Have new type of file to redirect?

Possible Implementations

I. Directory entry contains disk blocks?
— Contents (blocks) may change
— What happens when blocks change?
Il. Directory entry points to file descriptor?
— If removed, refers to non-existent file
— Must keep count, remove only if 0
— Hard link
— Similar if delete file in use (show example)
— What about hard link file across partitions?

Possible Implementation (“hard link”)

C's directory B's directory C's directory B's directory
Owner = Owner = Owner =
Count = 1 Count = Count = 1

] l {
O O O
(a) (b) (c)

a) Initial situation
b) After link created
c) Original owner removes file (what if quotas?)

3/25/2014

11

Possible Implementation (“soft link”)

. Have new type of file to redirect?
— New file only contains alternate name for file
— Overhead, must parse tree second time
— Soft link (or symbolic link)

* Note, shortcut in Windows only viewable by graphic browser, are
absolute paths, with metadata, can track even if move

* Does have mklink (hard and soft) for NTFS
— Often have max link count in case loop (show example)
— What about soft link across partitions?

Robust File Systems

* Consider removing a file
a. Remove file from directory entry
b. Return all disk blocks to pool of free disk blocks
c. Release the file descriptor (i-node) to the pool of free
descriptors
* What if system crashes in the middle?
— i-node becomes orphaned (lLost+found, 1 per
partition)
— if flip steps, blocks/descriptor free but directory entry
exists
* This is worse — can access blocks unintentionally!

* Solution? = Journaling File Systems

Journaling File Systems

. Write intent to do actions a-c to log before starting

— Note, may read back to verify integrity

Perform operations

Erase log
If system crashes, when restart read log and apply
operations
Logged operations must be idempotent (can be
repeated without harm)
Windows: NTF'S; Linux: Ext 3

Outline
* Files (done)
* Directories (done)
* Disk space management (next)

* Misc

* Example systems

3/25/2014

12

Disk Space Management

* n bytes - choices:
1. contiguous
2. blocks

* Similarities with memory management

— contiguous is like variable-sized partitions
¢ but compaction by moving on disk very slow!
¢ so use blocks
— blocks are like paging (can be wasted space)
¢ how to choose block size?
* (Note, physical disk block size typically 512 bytes, but file
system logical block size chosen when formatting)

* Depends upon size of files stored

File Sizes in Practice (1 of 2)

Length | VU 1984 | VU 2005 | Web Length | VU 1984 | VU 2005 | Web |
1] e 138 | 667 16KB | 9253 7892 | 86.79
2 1.88 153 | 767 32KB | 9721 85.87 | 91.65
4| 201 165 | 833 64 KB 99.18 90.84 | 94.80
8 2.31 180 | 11.30 128KB | 99.84 93.73 | 9693 |
16| a3 2.15 | 1146 256KB | 99.96 96.12 | 98.48 |
2| 513 3.15 | 12.33 512KB | 100.00 97.73 | 98.99 |
64 | 871 4.98 | 26.10 1MB | 100.00 98.87 | 9962 |
128 | 1473 8.03 | 28.49 2MB | 100.00 99.44 | 9980 |
256 | 23.08 1329 | 32.10 4MB | 100.00 99.71 | 99.87
512 | 3444 | 2062 | 39.94 8MB | 100.00 99.86 | 99.94 |
1KB | 48.05 | 3091 | 47.82 16MB | 100.00 99.94 | 99.97
2KB | 6087 | 46.09 | 5044 32MB | 100.00 99.97 | 99.99 |
4KB | 7531 50.13 | 70.64 64MB | 100.00 99.99 | 99.99 |
8KB | 8497 | 69.96 | 79.69 128MB | 100.00 99.99 | 100.00

(VU = University circa 2005, Web — Commercial Web server 2005)
Files trending larger. But most small. What are the tradeoffs?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Cumulative Distribution

File Sizes in Practice (2 of 2)

0.001

0.0001

°
1 - Cumulative Distribution

1e-05

0 1e-06
0 200 400 600 800 1000 1 10 100 1000 10000 100000 le+06

File Size (Kbytes) File Size (Koytes)

Claypool Office PC
Linux Ubuntu
March 2014

Choosing Block Size

* Large blocks
— faster throughput, less seek time, more data per read
— wasted space (internal fragmentation)
* Small blocks
— less wasted space
— more seek time since more blocks to access same data

Disk Space
Utilization

Data Rate

Block size —

3/25/2014

13

Disk Performance and Efficiency

60 — ol 100%
Data Rate ’
50 - 7 c
5 —80% &
8 Utilization N /! 5
@ 40 / o
s S —e0% E
2 30 / 8
° ,/ —a0% &
V.
% 20— / x
4 [}
c » 20% O
10— e 40%
{ 4
ol 4 ded—e="T L 0%

.
1KB 4KB 16KB 64KB 256KB 1MB

Assume 4 KB files.
At crossover (~64 KB), only 6.6 MB/sec, Efficiency 7% (both bad)
Most file systems pick 1KB — 4 KB

But disks are cheap, so could argue for larger and not worry about waste

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keeping Track of Free Blocks

Free disk blocks: 16, 17, 18

42 230 ~ 8 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
st [w2 | 141 1101111101101
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

a) Linked-list of free blocks
b) Bitmap of free blocks

Keeping Track of Free Blocks

a) Linked list of free blocks

— 1K block, 32 bit disk block number
= 255 free blocks/block (one points to next block)

— 500 GB disk has 488 millions disk blocks
* About 1,900,000 1 KB blocks
b) Bitmap of free blocks
— 1 bit per block, represents free or allocated

— 500 GB disk needs 488 million bits
¢ About 60,000 1 KB blocks

Tradeoffs

Bitmap usually smaller since 1-bit per block
rather than 32 bits per block

Only if disk is nearly full does linked list require
fewer blocks

If enough RAM, bitmap method preferred since
provides locality, too

If only 1 “block” of RAM, and disk is full, bitmap
method may be inefficient since have to load
multiple blocks to find free space

— linked list can take first in line

3/25/2014

14

File System Performance

DRAM ~5 nanoseconds, Hard disk ~5 milliseconds
— Disk access 1,000,000x slower than memory!
—>reduce number of disk accesses needed

Block/buffer cache
— cache to memory

Full cache? Replacement algorithms use: FIFO, LRU,

2nd chance ...

— exact LRU can be done (why?)

Pure LRU inappropriate sometimes
— crash w/i-node can lead to inconsistent state
— some rarely referenced (double indirect block)

Modified LRU

* Is the block likely to be needed soon?
— if no, put at beginning of list

* Is the block essential for consistency of file
system?
— write immediately

* Occasionally write out all

—sync

Outline
Files (done)
Directories (done)
Disk space management (done)
Misc (next)

— partitions (fdisk, mount)
— maintenance
— quotas

Example systems
Distributed file systems

Partitions

* mount, unmount
— load super-block from disk
— pick access point in file-system

/ (root)
* Super-block SN
— file system type ver
ome
— block size
— free blocks = =
— free i-nodes

tmp

3/25/2014

15

Partitions: fdisk

* Partition is large group
of sectors allocated
for specific purpose

— IDE disks limited to 4
physical partitions

— logical (extended)
partition inside
physical partition

¢ Specify number of
cylinders to use

* Specify type

— “magic” number
recognized by OS

(Show example?)

System Reserved
200 M NS B
el Systom, Actve, it 1

“Disk3
fasc 2

UG 164 GaNTTS b
Onle ey iy Brions

“ Diska

sasc ideos 1)

P {46576 GANTES.

Onl ey

(“System Reserved” partition for Windows contains OS
boot code and code to do HDD decryption, if set)

File System Maintenance

* Format:
— create file system structure: super block, i-nodes
— format (Windows), mke2fs (Linux)
(Show “format /?” “man mke2fs”)

* “Bad blocks”
— most disks have some (even when brand new)

— chkdsk (Win, or properties->tools->error checking) or
badblocks (Linux)

— add to “bad-blocks” list (file system can ignore)
* Defragment (see picture next slide)

— arrange blocks allocated to files efficiently
* Scanning (when system crashes)

— lost+found, correcting file descriptors...

Defragmenting (Example, 1 of 2)

SundayParty.JPEG

e ragmented

I fragmentedt I deiragmented

B slocsted space WFT free space 0 heing processed

[slocsted space WFT freespace 7 being processed

Defragmenting (Example, 2 of 2)

i =—c x|

3 Disk Defragmenter consolidates fragmented files on your computer's hard disk to improve system
" performance. Tell me more about Disk Defragmenter

Schedule:
Scheduled defragmentation is turned on ¥ Configure schedule.
Run at 1:00 AM every Wednesday
Next scheduled run: 3/26/2014 1:20 AM

Current status:

Disk Last Run Progress
&© 3/25/2014 529 AM (22% fragmented)

1 Seagate Backup Plus Drive ... 3/19/2014 3:01 AM (0% fragmented)

& Games (G) 3/25/2014 5:29 AM (16% fragmentec)

< Pictures (H) 3/25/2014 530 AM (1% fragmented)

& Videos (1) 3/19/2014 3:08 AM (0% fragmented)

& System Reserved 3/25/2014 5:30 AM (3% fragmented)

Only disks that can be defragmented are shown.
To best determine if your disks need defragmenting right now, you need to first analyze your disks.

1% Analyze disk ‘ “y Defragment disk
Close

3/25/2014

16

Disk Quotas

Table 1: Open file table
In memory Open file table

charged to user disk addresses
. User=8
— user index to table 2 =t
Quota pointer —

— when file size changed, Attributes

Table 2: quota record

— soft lim
exceed

w/warning
— hard limit never
exceeded

Limit: blo
nodes

Quota table

Soft block limit

Hard block limit

Current # of blocks

Block warnings left

it checked,

Soft file limit

allowed

Hard file limit

Current # of files

File warnings left

cks, files, i-

— Running out of i-nodes
as bad as running out of

blocks

Overhead? Again, in

memory

Quota
record
for user 8

Outline

Files

Directories

Disk space management
Misc

Example systems

— Linux

— Windows

(done
(done
(done

~_— ~— ~— ~—

(done
(next)

Linux File System

User —
process

() O

File —
system

POSIX
Virtual file system
VFS interface

Buffer cache |

Virtual FS allows loading of many different FS, without changing
process interface
— Stillhave struct file_struct,open(),creat (), ..

When build/install, FS choices = ext3/4, hfps, DOS, NFS, NTFS,
smbfs, is9660, ... (about 2 dozen)

ext3 is “de

fault” for many, most popular

— Changing to ext4

Linux File System: ext3fs

“Extended” (from Minix) file system, version 2
— (Minix a Unix-like teaching OS by Tanenbaum)

ext2fs

— Long file names, long files, better performance

— Main for many years
ext3fs

— Fully compatible with ext2
— Adds journaling

ext4fs

— Extents (for free space management)
— Pre-reserved, multi-block allocation

— Better timestamp granularity

3/25/2014

17

Linux File System: i-nodes (1 of 2)

e Usesi-nodes

exr?_trade

— mode for file,

Wode

Owner info

directory,

Size

Timestanps

symbolic link

Direct Blocks

Indirect blocks

b

Deuble 1ndirect

Triple Indirect

-
djad

Linux File System: i-nodes (2 of 2)

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 60 Address of first 12 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

Linux File System: Blocks

* Default block size
* For higher performance

% sudo tune2fs -1 /dev/sdal | grep Block

Block count: 60032256
Block size: 4096
Blocks per group: 32768

— performs 1/0 in chunks (reduce requests)
— clusters adjacent requests (block groups)

* Group has:

— bit-map of free blocks and free i-nodes

— copy of super block

Boot| Block group 0 | Block group 1

Block group 2 | Block group 3 | Block group 4

[Super—| Group Block |l-node
block | descriptor | bitmap | bitmap

Data
I-nodes blocks

Linux File System: Directories

* Directory just special file with names and i-nodes

o 15 55
‘il ‘15 |5 |€Me wz‘:ao | 14|very,\ong,name
incde table
Y

3/25/2014

18

3/25/2014

Linux File System: Unified Linux Filesystem: ext3fs

Hard disk oo Hard disk * Journaling — internal structure assured
— Journal (lowest risk) - Both metadata and file contents
written to journal before being committed.
* Roughly, write twice (journal and data)
— Ordered (medium risk) - Only metadata, not file contents.
Guarantee write contents before journal committed
* Often the default
— Writeback (highest risk) - Only metadata, not file contents.
Contents might be written before or after the journal is
updated. So, files modified right before crash can be

. . corrupted
* (left) separate file trees (ala Windows) * Nobuilt-in defragmentationtools
° (right) after mOUI’ltIng llDVDII under llbll Lil’lUX — PrObably not much needed iyukon% sudo fsck -nvf /dev/sdal E

-
1 942826 inodes used (6.28%)
1138 non-contiguous files (0.1%)
821 non-contiguous directories (0.1%) E

Linux Filesystem: /proc Windows NT File System: NTFS

* Contents of “files” not stored, but computed

* Provide interface to kernel statistics * Background: Windows had FAT
. Mgst rea'd only, access - . FAT-16, FAT-32
U—SI:i_l,Jcr:tlx/:i:(/tptui?ols| grep model - — 16-bit addresses, so limited disk partitions (2 GB)
* enabled by PN — 32-bit can support 2 TB
NS * NTFS default in Win XP and later

gz
FE

(Show examples
e.g.,,cd /proc/self)

— 64-bit addresses

FEgEea—

oo

19

NTFS: Fundamental Concepts

* File names limited to 255 characters
Full paths limited to 32,000 characters

* File names in unicode (other languages, 16-
bits per character)

* Case sensitive names (“Foo” different than
”FOO”)

— But Win32 API does not fully support

&XKHPF

NTFS: Fundamental Concepts

File not sequence of bytes, but multiple
attributes, each a stream of bytes

Example:

— One stream name (short)

— One stream id (short)

— One stream data (long)

— But can have more than one long stream

Streams have metadata (e.g., thumbnail image)

Streams fragile, and not always preserved by
utilities over network or when copied/backed up

NTFS: Fundamental Concepts

* Hierarchical, with “\” as component separator

— Throwback for MS-DOS to support CP/M
microcomputer OS

» Supports links, but only for POSIX subsystem

NTFS: File System Structure

Basic allocation unit called a cluster (block)

— Sizes from 512 bytes to 64 Kbytes (most 4 KBytes)

— Referred to by offset from start, 64-bit number

Each volume has Master File Table (MFT)

— Sequence of 1 KByte records

— Bitmap to keep track of which MFT records are free

Each MFT record

— Unique ID - MFT index, and “version” for caching and consistency

— Contains attributes (name, length, value)

— If number of extents small enough, whole entry stored in MFT
(faster access)

Bitmap to keep track of free blocks

Extents to keep clusters of blocks

3/25/2014

20

NTFS: Storage Allocation

Standard File name Data ~—— Info about data blocks —>
info header header header
Run #1 Run #2 Run #3
Record \ Header Run un un
header\
| | R
Standard || gye name || 019|201 4 |84 2 |80: 3
MTF info ; | H H /
record H : %

owesess (TTT] [[IT]

Blocks numbers 20-23 64-65 80-82

* Disk blocks kept in runs (extents), when
possible

NTFS: Storage Allocation

109

108 F Run#m+l -~ [Runn 777 4<—— Second extension record
107

106

105 h JRun #k+1] e JRun m |<«—— First extension record
104

103

101
100 |

102 h] MFT 105 [MFT 108 [JRun #1[- - JRun #k|<—— Base record

* If file too large, can link to another MFT record

NTFS: Directories

* Name plus pointer to record with file system
entry

* Also cache attributes (name, sizes, update) for
faster directory listing

* If few files, entire directory in MFT record

A directory entry contains the MFT index for the file,
Standard Index root the length of the file name, the file name itself,

info header header and various fields and flags
Record
header 7
Standard
info %

NTFS: Directories

* But if large, linear search can be slow

* Store directory info (names, perms, ...) in B+
tree
— Every path from root to leaf “costs” the same

— Insert, delete, search all O(logN)
* Fisthe “fanout” (typically 3)

— Faster than linear search O(N) versus O(logN)
— Doesn’t need reorganizing like binary tree

3/25/2014

21

NTFS: File Compression
® Transparent to user
— Can be created (set) in compressed mode
» Compresses (or not) in 16-block chunks

Original uncompressed file

0 16 32 47
LT P T T
o 7. g 26 w24 a1
| Compressed | | | | | |Ulnéor[n;|)résgeld| | | | | Compressed |
Disk addr 30 37 40 55 85 92
(a)
Header Five runs (of which two empties)
A A A A A A
Standard || . : | 1 ' //////////
info File name || 0 346 3058 0 | 8 |40 516 855 810 ; 8 Unused /
. H H H : 2

(b)

NTFS: Journaling

* Many file systems lose metadata (and data) if powerfailure
— fsck, chkdsk when reboot
— Can take a looong time and lose data
* lost+found
* Recover via “transaction” model
— Log file with redo and undo information
— Start transactions, operations, commit
— Every 5 seconds, checkpoint log to disk

— If crash, redo successful operations and undo those that don’t
commit

* Note, doesn’t cover user data, only meta data

3/25/2014

22

