
3/25/2014

1

Distributed Computing Systems

File Systems

Motivation – Process Need

• Processes store, retrieve information

• When process terminates, memory lost

• How to make it persist?

• What if multiple processes want to share?

• Requirements:

– large

– persistent

– concurrent access

Solution? Disks

are large,

persistent!

Motivation – Disk Functionality (1 of 2)

• Sequence of fixed-size blocks

• Support reading and writing of blocks

bs – boot sector

sb – super block

Motivation – Disk Functionality (2 of 2)

• Questions that quickly arise

– How do you find information?

– How to map blocks to files?

– How do you keep one user from reading another’s

data?

– How do you know which blocks are free?

Solution? File Systems

3/25/2014

2

Outline

• Files (next)

• Directories

• Disk space management

• Misc

• Example systems

File Systems

• Abstraction to disk (convenience)

– “The only thing friendly about a disk is that it has

persistent storage.”

– Devices may be different: tape, USB, IDE/SCSI, NFS

• Users

– don’t care about implementation details

– care about interface

• OS

– cares about implementation (efficiency and

robustness)

File System Concepts

• Files - store the data

• Directories - organize files

• Partitions - separate collections of directories (also
called “volumes”)

– all directory information kept in partition

– mount file system to access

• Protection - allow/restrict access for files, directories,
partitions

Files: The User’s Point of View

• Naming: how does user refer to it?

• Example: blah, BLAH, Blah
– Does case matter?

– Users often don’t distinguish, and in much of Internet no
difference (e.g., email), but sometimes (e.g., URL path)

– Windows: generally case doesn’t matter, but is preserved

– Linux: generally case matters

• Example: file.c, file.com
– Does extension matter?

– Software may distinguish (e.g., compiler for .cpp, Windows
Explorer for application association)

– Windows: explorer recognizes extension for applications

– Linux: extension ignored by system, but software may use
defaults

3/25/2014

3

Structure

• What’s inside?

a) Sequence of bytes (most modern OSes (e.g.,
Linux, Windows))

b) Records - some internal structure

c) Tree - organized records

Type and Access

• Type:

– ascii - human readable

– binary - computer only readable

– Allowed operations/applications (e.g., executable, c-file …)
(via “magic number” or extension)

• Access Method:

– sequential (for character files, an abstraction of I/O of
serial device such as modem)

– random (for block files, an abstraction of I/O to block
device such as a disk)

Common Attributes System Calls for Files

• Create

• Delete

• Truncate

• Open

• Read

• Write

• Append

• Seek

• Get attributes

• Set attributes

• Rename

3/25/2014

4

Example: Program to Copy File Example: Program to Copy File

Zoom in on open()system call

Example: Unix open()

int open(char *path, int flags [, int mode])

• path is name of file

• flags is bitmap to set switch

– O_RDONLY, O_WRONLY, O_TRUNC …

– O_CREATE then use mode for permissions

• success, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
User Space

System Space

stdin

stdout

stderr

...

0

1

2

3
File Structure

...

...

File

Descriptor

(where

blocks are)
(attributes)(index)

(Per process) (Per device)

3/25/2014

5

Example: Windows CreateFile()

• Returns file object handle:
HANDLE CreateFile (

lpFileName, // name of file

dwDesiredAccess, // read-write

dwShareMode, // shared or not

lpSecurity, // permissions

...

)

• File objects used for all: files, directories,
disk drives, ports, pipes, sockets and
console

File System Layout

• BIOS reads in program (“bootloader”, e.g., grub) in Master

Boot Record (MBR) in fixed location on disk

• MBR has partition table (start, end of each partition)

• Bootloader reads first block (“boot block”) of partition

• Boot block knows how to read next block and start OS

• Rest can vary. Often “superblock” with details on file system

– Type, number of blocks,…

(or GPT

see next)

MBR vs. GPT

• MBR = Master Boot Record

• GPT = Guid Partition Table

• Both help OS know partition structure of hard
disk

• Linux – default GPT (must use Grub 2), but can
use MBR

• Mac – default GPT. Can run on MBR disk, but
can’t install on it

• Windows – 64-bit support GPT. Windows 7
default MBR, but Windows 8 default GPT

Master Boot Record (MBR)

• Old standard, still widely in
use

• At beginning of disk, hold
information on partitions

• Also code that can scan for
active OS and load up boot
code for OS

• Only 4 partitions, unless 4th

is extended

• 32-bit, so partition size
limited to 2TB

• If MBR corrupted �
trouble!

3/25/2014

6

GUID Partition Table (GPT)

• Newest standard

• GUID = globally unique
identifiers

• Unlimited partitions (but
most OS limit to 128)

• Since 64-bit, 1 billion TB
partitions (Windows limit
256 TB)

• Backup table stored at end

• CRC32 checksums to detect
errors

• Protective MBR layer for
apps that don’t know about
GPT

File System Implementation

Process

Control Block

Open

File

Pointer

Array

Open File

Table

File Descriptor

Table

(in memory

copy,

one per

device)

(per process)

Disk

File sys info

File

descriptors

Copy fd

to mem

Directories

Data

Example – Linux (1 of 3)

Each task_struct describes a process

/* /usr/include/linux/sched.h */

struct task_struct {
volatile long state;
long counter;
long priority;
…
struct files_struct *files;

…
}

Example – Linux (2 of 3)

The files_struct data structure describes files
process has open

/* /usr/include/linux/fs.h */

struct files_struct {

int count;

fd_set close_on_exec;

fd_set open_fds;

struct file *fd[NR_OPEN];

};

3/25/2014

7

Example – Linux (3 of 3)

• Each open file is represented by a file data structure

struct file {
mode_t f_mode;
loff_t f_pos;
unsigned short f_flags;
unsigned short f_count;
unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
struct file *f_next, *f_prev;
int f_owner;
struct inode *f_inode; /* file descriptor */

struct file_operations *f_op;
unsigned long f_version;
void *private_data;

};

File System Implementation

• Which blocks with which file?

• File descriptor implementations:

– Contiguous

– Linked List

– Linked List with Index

– I-nodes

File Descriptor

Contiguous Allocation (1 of 2)

• Store file as contiguous block

– ex: w/ 1K block, 50K file has 50 consec. blocks
File A: start 0, length 2

File B: start 14, length 3

• Good:

– Easy: remember location with 1 number

– Fast: read entire file in 1 operation (length)

• Bad:

– Static: need to know file size at creation

• Or tough to grow!

– Fragmentation: remember why we had paging in
memory?

Contiguous Allocation (2 of 2)

a) 7 files

b) 5 files (file D and F deleted)

3/25/2014

8

Linked List Allocation

• Keep linked list with disk blocks

• Good:

– Easy: remember 1 number (location)

– Efficient: no space lost in fragmentation

• Bad:

– Slow: random access bad

File

Block

0

File

Block

1

File

Block

2

Physical

Block

null

4 7 2

File

Block

0

File

Block

1

null

6 3

Linked List Allocation with Index

• Table in memory

– MS-DOS FAT, Win98 VFAT

– faster random access

– can be large! E.g., 1 TB disk, 1 KB

blocks

• Table needs 1 billion entries

• Each entry 3 bytes (say 4 typical)

� 4 GB memory!

Physical

Block

0

1

null2

null3

74

5

36

27

Common format still (e.g., USB drives) since

supported by many OSes

I-node

• Fast for small files

• Can hold large files

• Typically 15 pointers

– 12 to direct blocks

– 1 single indirect

– 1 doubly indirect

– 1 triply indirect

• Pointers per block? Depends upon
block size and pointer size

• E.g., 1k byte block, 4 byte pointer �
each indirect has 256 pointers

• Max size? Same.

• E.g., 4KB block � max size 2 TB

Outline

• Files (done)

• Directories (next)

• Disk space management

• Misc

• Example systems

3/25/2014

9

Directories
• Just like files

– Have data blocks
– File descriptor to map which

blocks to directory

• But have special bit set so user
process cannot modify
contents
– data in directory is information / links

to files

– modify only through system call
– (See ls.c)

• Organized for:
– efficiency - locating file quickly
– convenience - user patterns

• groups (.c, .exe), same names

• Tree structure, directory the
most flexible
– User sees hierarchy of directories

• Readdir

• Rename

• Link

• Unlink

• Create

• Delete

• Opendir

• Closedir

System Calls for Directories

Directories

• Before reading file, must be opened

• Directory entry provides information to get

blocks

– disk location (blocks, address)

• Map ascii name to file descriptor

name block count

block numbers

Where are attributes stored?

Options for Storing Attributes

a) Directory entry has attributes (Windows)

b) Directory entry refers to file descriptor (e.g., i-
node), and descriptor has attributes (Unix)

3/25/2014

10

Windows (FAT) Directory

• Hierarchical directories

• Entry:

– name - date

– type (extension) - block number (w/FAT)

– time

name type attrib time date block size

Unix Directory

• Hierarchical directories

• Entry:

– name

– i-node number (try “ls –i” or “ls –iad .”)

• Example, say want to read data from below file

/usr/bob/mbox

Want consents of file, which is in blocks

Need file descriptor (i-node) to get blocks

How to find the file descriptor (i-node)?

inode name

Unix Directory Example

1 .

1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

132

Root Directory

Looking up

usr gives

I-node 6

6 .

1 ..

26 bob

17 jeff

14 sue

51 sam

29 mark

Block 132

Looking up

bob gives

I-node 26

26 .

6 ..

12 grants

81 books

60 mbox

17 Linux

Aha!

I-node 60

has contents

of mbox

I-node 6

406

I-node 26

Contents of

usr in

block 132

Block 406

Contents of

bob in

block 406

Length of File Names

• Above, each directory entry is name (and

attributes) plus descriptor

• How long should file names be?

• If fixed small, will hit limit (users don’t like)

• If fixed large, may be wasted space (internal

fragmentation)

• Solution � allow variable length names

3/25/2014

11

Handling Long Filenames

a) Compact (all in memory, so fast) on word boundary

b) Heap to file

Same File in More than One Location

• Possibilities for the “alias”:

I. Directory entry contains disk
blocks?

II. Directory entry points to
attributes structure?

III. Have new type of file to redirect?

B C

A ? B C

(Instead of tree,

really have

directed acyclic

graph)

“alias”

Will review each

implementation

choice, next

Possible Implementations

I. Directory entry contains disk blocks?

– Contents (blocks) may change

– What happens when blocks change?

II. Directory entry points to file descriptor?

– If removed, refers to non-existent file

– Must keep count, remove only if 0

– Hard link

– Similar if delete file in use (show example)

– What about hard link file across partitions?

Possible Implementation (“hard link”)

a) Initial situation

b) After link created

c) Original owner removes file (what if quotas?)

3/25/2014

12

Possible Implementation (“soft link”)

III. Have new type of file to redirect?

– New file only contains alternate name for file

– Overhead, must parse tree second time

– Soft link (or symbolic link)

• Note, shortcut in Windows only viewable by graphic browser, are
absolute paths, with metadata, can track even if move

• Does have mklink (hard and soft) for NTFS

– Often have max link count in case loop (show example)

– What about soft link across partitions?

Robust File Systems

• Consider removing a file
a. Remove file from directory entry

b. Return all disk blocks to pool of free disk blocks

c. Release the file descriptor (i-node) to the pool of free
descriptors

• What if system crashes in the middle?
– i-node becomes orphaned (lost+found, 1 per

partition)

– if flip steps, blocks/descriptor free but directory entry
exists

• This is worse – can access blocks unintentionally!

• Solution? � Journaling File Systems

Journaling File Systems

1. Write intent to do actions a-c to log before starting

– Note, may read back to verify integrity

2. Perform operations

3. Erase log

• If system crashes, when restart read log and apply

operations

• Logged operations must be idempotent (can be

repeated without harm)

• Windows: NTFS; Linux: Ext3

Outline

• Files (done)

• Directories (done)

• Disk space management (next)

• Misc

• Example systems

3/25/2014

13

Disk Space Management

• n bytes � choices:

1. contiguous

2. blocks

• Similarities with memory management

– contiguous is like variable-sized partitions

• but compaction by moving on disk very slow!

• so use blocks

– blocks are like paging (can be wasted space)

• how to choose block size?

• (Note, physical disk block size typically 512 bytes, but file
system logical block size chosen when formatting)

• Depends upon size of files stored

File Sizes in Practice (1 of 2)

• (VU – University circa 2005, Web – Commercial Web server 2005)

• Files trending larger. But most small. What are the tradeoffs?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Sizes in Practice (2 of 2)

Claypool Office PC

Linux Ubuntu

March 2014

Choosing Block Size

• Large blocks

– faster throughput, less seek time, more data per read

– wasted space (internal fragmentation)

• Small blocks

– less wasted space

– more seek time since more blocks to access same data

Data Rate

Disk Space

Utilization

Block size

3/25/2014

14

Disk Performance and Efficiency

• Assume 4 KB files.

• At crossover (~64 KB), only 6.6 MB/sec, Efficiency 7% (both bad)

• Most file systems pick 1KB – 4 KB

• But disks are cheap, so could argue for larger and not worry about waste

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Data Rate

Utilization

Keeping Track of Free Blocks

a) Linked-list of free blocks

b) Bitmap of free blocks

Keeping Track of Free Blocks

a) Linked list of free blocks

– 1K block, 32 bit disk block number

= 255 free blocks/block (one points to next block)

– 500 GB disk has 488 millions disk blocks

• About 1,900,000 1 KB blocks

b) Bitmap of free blocks

– 1 bit per block, represents free or allocated

– 500 GB disk needs 488 million bits

• About 60,000 1 KB blocks

Tradeoffs

• Bitmap usually smaller since 1-bit per block
rather than 32 bits per block

• Only if disk is nearly full does linked list require
fewer blocks

• If enough RAM, bitmap method preferred since
provides locality, too

• If only 1 “block” of RAM, and disk is full, bitmap
method may be inefficient since have to load
multiple blocks to find free space

– linked list can take first in line

3/25/2014

15

File System Performance

• DRAM ~5 nanoseconds, Hard disk ~5 milliseconds

– Disk access 1,000,000x slower than memory!

�reduce number of disk accesses needed

• Block/buffer cache

– cache to memory

• Full cache? Replacement algorithms use: FIFO, LRU,
2nd chance …

– exact LRU can be done (why?)

• Pure LRU inappropriate sometimes

– crash w/i-node can lead to inconsistent state

– some rarely referenced (double indirect block)

Modified LRU

• Is the block likely to be needed soon?

– if no, put at beginning of list

• Is the block essential for consistency of file

system?

– write immediately

• Occasionally write out all

– sync

Outline

• Files (done)

• Directories (done)

• Disk space management (done)

• Misc (next)

– partitions (fdisk, mount)

– maintenance

– quotas

• Example systems

• Distributed file systems

Partitions

• mount, unmount

– load super-block from disk

– pick access point in file-system

• Super-block

– file system type

– block size

– free blocks

– free i-nodes

/ (root)

usr
home

tmp

3/25/2014

16

Partitions: fdisk

• Partition is large group
of sectors allocated
for specific purpose
– IDE disks limited to 4

physical partitions

– logical (extended)
partition inside
physical partition

• Specify number of
cylinders to use

• Specify type
– “magic” number

recognized by OS

(Show example?)
(“System Reserved” partition for Windows contains OS

boot code and code to do HDD decryption, if set)

File System Maintenance
• Format:

– create file system structure: super block, i-nodes

– format (Windows), mke2fs (Linux)

(Show “format /?”, “man mke2fs”)

• “Bad blocks”

– most disks have some (even when brand new)

– chkdsk (Win, or properties->tools->error checking) or
badblocks (Linux)

– add to “bad-blocks” list (file system can ignore)

• Defragment (see picture next slide)

– arrange blocks allocated to files efficiently

• Scanning (when system crashes)

– lost+found, correcting file descriptors...

Defragmenting (Example, 1 of 2) Defragmenting (Example, 2 of 2)

3/25/2014

17

Disk Quotas

• Table 1: Open file table
in memory
– when file size changed,

charged to user
– user index to table 2

• Table 2: quota record
– soft limit checked,

exceed allowed
w/warning

– hard limit never
exceeded

• Limit: blocks, files, i-
nodes
– Running out of i-nodes

as bad as running out of
blocks

• Overhead? Again, in
memory

Outline

• Files (done)

• Directories (done)

• Disk space management (done)

• Misc (done)

• Example systems (next)

– Linux

– Windows

Linux File System

• Virtual FS allows loading of many different FS, without changing
process interface
– Still have struct file_struct, open(), creat(), …

• When build/install, FS choices � ext3/4, hfps, DOS, NFS, NTFS,
smbfs, is9660, … (about 2 dozen)

• ext3 is “default” for many, most popular

– Changing to ext4

Linux File System: ext3fs

• “Extended” (from Minix) file system, version 2
– (Minix a Unix-like teaching OS by Tanenbaum)

• ext2fs

– Long file names, long files, better performance

– Main for many years

• ext3fs

– Fully compatible with ext2

– Adds journaling

• ext4fs

– Extents (for free space management)

– Pre-reserved, multi-block allocation

– Better timestamp granularity

3/25/2014

18

Linux File System: i-nodes (1 of 2)
• Uses i-nodes

– mode for file,

directory,

symbolic link

...

Linux File System: i-nodes (2 of 2)

Linux File System: Blocks

• Default block size

• For higher performance

– performs I/O in chunks (reduce requests)

– clusters adjacent requests (block groups)

• Group has:

– bit-map of free blocks and free i-nodes

– copy of super block

% sudo tune2fs -l /dev/sda1 | grep Block

Block count: 60032256

Block size: 4096

Blocks per group: 32768

Linux File System: Directories

• Directory just special file with names and i-nodes

3/25/2014

19

Linux File System: Unified

• (left) separate file trees (ala Windows)

• (right) after mounting “DVD” under “b” Linux

Linux Filesystem: ext3fs

• Journaling – internal structure assured
– Journal (lowest risk) - Both metadata and file contents

written to journal before being committed.
• Roughly, write twice (journal and data)

– Ordered (medium risk) - Only metadata, not file contents.
Guarantee write contents before journal committed

• Often the default

– Writeback (highest risk) - Only metadata, not file contents.
Contents might be written before or after the journal is
updated. So, files modified right before crash can be
corrupted

• No built-in defragmentation tools
– Probably not much needed yukon% sudo fsck -nvf /dev/sda1

…
942826 inodes used (6.28%)

1138 non-contiguous files (0.1%)

821 non-contiguous directories (0.1%)

Linux Filesystem: /proc

• Contents of “files” not stored, but computed

• Provide interface to kernel statistics

• Most read only, access

using Unix text tools
– e.g., cat /proc/cpuinfo | grep model

• enabled by

“virtual file system”

(Windows has perfmon)

(Show examples

e.g., cd /proc/self)

Windows NT File System: NTFS

• Background: Windows had FAT

• FAT-16, FAT-32

– 16-bit addresses, so limited disk partitions (2 GB)

– 32-bit can support 2 TB

– No security

• NTFS default in Win XP and later

– 64-bit addresses

3/25/2014

20

NTFS: Fundamental Concepts

• File names limited to 255 characters

• Full paths limited to 32,000 characters

• File names in unicode (other languages, 16-

bits per character)

• Case sensitive names (“Foo” different than

“FOO”)

– But Win32 API does not fully support

NTFS: Fundamental Concepts

• File not sequence of bytes, but multiple
attributes, each a stream of bytes

• Example:
– One stream name (short)

– One stream id (short)

– One stream data (long)

– But can have more than one long stream

• Streams have metadata (e.g., thumbnail image)

• Streams fragile, and not always preserved by
utilities over network or when copied/backed up

NTFS: Fundamental Concepts

• Hierarchical, with “\” as component separator

– Throwback for MS-DOS to support CP/M

microcomputer OS

• Supports links, but only for POSIX subsystem

NTFS: File System Structure

• Basic allocation unit called a cluster (block)
– Sizes from 512 bytes to 64 Kbytes (most 4 KBytes)

– Referred to by offset from start, 64-bit number

• Each volume has Master File Table (MFT)
– Sequence of 1 KByte records

– Bitmap to keep track of which MFT records are free

• Each MFT record

– Unique ID - MFT index, and “version” for caching and consistency

– Contains attributes (name, length, value)

– If number of extents small enough, whole entry stored in MFT
(faster access)

• Bitmap to keep track of free blocks

• Extents to keep clusters of blocks

3/25/2014

21

NTFS: Storage Allocation

• Disk blocks kept in runs (extents), when

possible

NTFS: Storage Allocation

• If file too large, can link to another MFT record

NTFS: Directories

• Name plus pointer to record with file system
entry

• Also cache attributes (name, sizes, update) for
faster directory listing

• If few files, entire directory in MFT record

NTFS: Directories

• But if large, linear search can be slow

• Store directory info (names, perms, …) in B+

tree

– Every path from root to leaf “costs” the same

– Insert, delete, search all O(logFN)

• F is the “fanout” (typically 3)

– Faster than linear search O(N) versus O(logFN)

– Doesn’t need reorganizing like binary tree

3/25/2014

22

NTFS: File Compression
• Transparent to user

– Can be created (set) in compressed mode

• Compresses (or not) in 16-block chunks

NTFS: Journaling

• Many file systems lose metadata (and data) if powerfailure

– fsck, chkdsk when reboot

– Can take a looong time and lose data

• lost+found

• Recover via “transaction” model

– Log file with redo and undo information

– Start transactions, operations, commit

– Every 5 seconds, checkpoint log to disk

– If crash, redo successful operations and undo those that don’t
commit

• Note, doesn’t cover user data, only meta data

