Performance and Extension of
User Space File

Aditya Raigarhia and Ashish Gehani
Stanford and SRl

ACM Symposium on Applied Computing (SAC)
Sierre, Switzerland, March 22-26, 2010

Introduction (1 of 2)

* Developing in-kernel file systems challenging
— Understand and deal with kernel code and data
structures
— Steep learning curve for kernel development
* No memory protection
* No use of debuggers
* Must beinC
* No standard C library
* In-kernel implementations not so great
— Porting to other flavors of Unix can be difficult
— Needs root to mount — tough to use/test on servers

Introduction (2 of 2)

* Modern file system research adds functionality
over basic systems, rather than designing low-
level systems
— Ceph [37] — distributed file system for performance

and reliability — uses client in users space

* Programming in user space advantages
— Wide range of languages
— Use of 3" party tools/libraries

— Fewer kernel quirks (although still need to couple user
code to kernel system calls)

Introduction - FUSE

* File system in USEr space (FUSE) — framework for Unix-
like OSes

* Allows non-root users to develop file systems in user
space

* API for interface with kernel, using fs-type operations
* Many different programming language bindings

* FUSE file systems can be mounted by non-root users
* Can compile without re-compiling kernel

e Examples

— WikipediaFS [2] lets users view/edit Wikipedia articles as if
local files

— SSHFS access via SFTP protocol

4/15/2014

Problem Statement

Prevailing view — user space file systems suffer
significantly lower performance compared to
kernel

— Overhead from context switch, memory copies
Perhaps changed due to processor, memory and
bus speeds?

Regular enhancements also contribute to
performance?

Either way — measurement of “prevailing view”

Outline

* Introduction (done)
* Background (next)
* FUSE overview

* Programming for FS

* Benchmarking

* Results

* Conclusion

Background — Operating Systems

Microkernel (Mach [10], Spring [11]) have only
basic services in kernel

— File systems (and other services) in user space

— But performance is an issue, not widely deployed
Extensible OSes (Spin[1], Vino[4]) export OS
interfaces

— User level code can modify run-time behavior

— Still in research phase

Background — Stackable FS

* Stackable file systems [28] allow new features to
be added incrementally

— FiST [40] allows file systems to be described using
high-level language

— Code generation makes kernel modules — no
recompilation required

* But

— cannot do low-level operations (e.g., block layout on
disk, metatdata for i-nodes)

— Still require root to load

4/15/2014

Background — NFS Loopback

* NFS loopback servers [24] puts server in user-
space with client
— Provides portability
— Good performance
* But
— Limited to NFS weak cache consistency

— Uses OS network stack, which can limit
performance

Background - Misc

e Coda [29] is distributes file system
— Venus cache manager in user space
— Arla [38] has AFS user-space daemon
— But not widespread
* ptrace() - process trace
— Working infrastructure for user-level FS
— Can interacept anything
— But significant overhead
e puffs [15] similar to FUSE but NetBSD
— FUSE built on puffs for some systems
— But puffs not as widespreadh

Background — FUSE contrast

FUSE similar since loadable kernel module

* Unlike others is mainstream — part of Linux
since 2.6.14, ports to Mac OSX, OpenSolaris,
FreeBSD and NetBSD

— Reduces risk of obsolete once developed
* Licensing flexible — free and commercial
* Widely used (examples next)

Background — FUSE in Use

* TierStore [6] distributed file system to simply
deployment of apps in unreliable networks
— Uses FUSE

* Increasing trend for dual OS (Win/Linux)

— NTFS-3G [25] open source NTFS uses FUSE
— ZFS-FUSE [41] is port of Zeta FS to Linux
— VMMWare disk mount [36] uses FUSE on Linux

4/15/2014

FUSE Example — SSHFS on Linux

https://help.ubuntu.com/community/SSHFS

% mkdir ccc

% sshfs -o idmap=user claypool@ccc.wpi.edu:/home/claypool ccc

% fusermount -u ccc

Outline
* Introduction (done)
* Background (done)
* FUSE overview (next)

* Programming for FS
* Benchmarking

* Results

* Conclusion

FUSE Overview

On userfs mount, FUSE
kernel module registers
with VFS

— e.g., call to “sshfs”
userfs provides callback
functions
All file system calls (e.g.,
read()) proceed normally
from other process
When targeted at FUSE dir,
go through FUSE module
If in page cache, return
Otherwise, to userfs via
/dev/fuse and libfuse
userfs can do anything
(e.g., request data from
ext3 and add stuff) before
returning data

Userspace

Kernel

fusermount allows non-
root users to mount

FUSE APIs for User FS

¢ Low-level

— Resembles VFS — user fs handles i-nodes, pathname
translations, fill buffer, etc.

— Useful for “from scratch” file systems (e.g., ZFS-FUSE)
* High-level

— Resembles system calls

— User fs only deals with pathnames, not i-nodes

— libfuse does i-node to path translation, fill buffer

— Useful when adding additional functionality

4/15/2014

FUSE — Hello World Example

Flow
Run
~/fuse/example$ mkdir /tmp/fuse R
~/fuse/example$./hello /tmp/fuse ‘ Is =1 Amp/fuse L libfuse]
~/fuse/example$ 1s -1 /tmp/fuse
total @ [glibe (glibe 1

-r--r--r-- 1 root root 13 Jan 1 1970 hello
~/fuse/example$ cat /tmp/fuse/hello

userspace

Hello World! kemel FUSE
~/fuse/example$ fusermount -u /tmp/fuse 4‘7 o ‘

~/fuse/example$

VES

FUSE — Hello World (1 of 4)

#define FUSE USE VERSION 26

#include <fuse.h>

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

static comst char *hello str = "Hello World! . n";

static const char *hello path = "/hello";

static struct fuse_operations hello oper = {
.getattr hello getattr,
.readdir hello readdir, .
_open = hello open, «~—— Callback operations
.read = hello_read,

b

int main(int argc, char *argv([])
{ Invoking

return fuse main(argc, argv, &hello oper, NULL): . ,
does ‘mount

}

FUSE — Hello World (2 of 4)

static int hello getattr (comnst char *path, struct stat *sthuf)
{

int res = 0;

memset (stbuf, 0, sizeof (struect stat)):

if (strcmp (path, "/") == 0) {
stbuf->st_mode 5_IFDIR | 0755;
stbuf-»st_nlink = 27

} else if (strcmp(path, hello_path)
stbuf->st_mode = S_IFREG |
stbuf->st_nlink = 1;
stbuf->st_size = strlen(hello_str):

} else
res = -ENOENT;

return res; Fill in file status structure
} (type, permissions)

static int hello_open(const char *path, struct fuse_file_info *fi)
{
if (strcmp(path, hello path) != 0)
return -ENOENT;

Check that path is right

if ((fi->flags & 3) O_RDONLY) Check permissions right (read only)
return - ;
return 0;
}
static int hello_ read(const char *path, char *buf, size t size, off t offset,
struet fuse file info *fi)
{
size_t len;

(void) fi;

if (strcmp (path, hello path) != 0)
return -ENOENT; Check that path is right

Copy data to buffer

len = strlen(hello_str);
if (offset < len) {
if (offset + size > len)
size = len - offset;
memcpy (buf, hello str + offset, size):
} else
size = 05

return size;

4/15/2014

FUSE — Hello World (4 of 4)

static int hello readdir (const char *path, void *buf, f £ill dir t filler,
off_t offset, struct fuse file info *fi)
{
(void) offset;
(void) fi;

if (stremp(path, "/") 1= 0) s \
return -ENOENT; i Copy in directory listings i

filler (buf,
filler (buf,
filler (buf,

", NULL, 0);
..", NULL, 0);
ello_path + 1, NULL, 0);

return 0;

Performance Overhead of FUSE :
Switching

* When using native (e.g., ext3)
— Two user-kernel mode switches (to and from)
* Relatively fast since only privilege/unpriviledge
— No context switches between processes/address
space
* When using FUSE
— Four user-kernel mode switches (adds up to userfs
and back)
— Two context switches (user process and userfs)
* Cost depends upon cores, registers, page table, pipeline

Performance Overhead of FUSE :
Reading

* FUSE used to have 4 KB read size
— If memory constrained, large reads would do
many context switch each read

* swap out userfs, bring in page, swap in userfs, continue
request, swap out userfs, bring in next page ...

¢ FUSE now reads in 128 KB chunks with
big writes mount option

— Most Unix utilities (cp, cat, tar) use 32 KB file
buffers

Performance Overhead of FUSE :
Time for Writing

(Write 16 MB file)

200 T

- Native mm—
8 175t FUSE (big_writes enabled) === |
] FUSE (big_writes disabled)
o 150 m
3
= 125
=
o 100
E
= L
. 75
o
£ 50
%3
g st I

0 =

4KB 32KB 128KB
Chunk Size

Note, benefit from 4KB to 32KB, but not 32KB to 128KB

4/15/2014

Performance Overhead of FUSE :
Memory Copying

* For native (e.g., ext3), write copies from
application to kernel page cache (1x)

* For user fs, write copies from application to
page cache, then from page cache to libfuse,
then libfuse to userfs (3x)

* direct_io mount option — bypass page
cache, user copy directly to userfs (1x)

— But reads can never come from kernel page cache!

Performance Overhead of FUSE :
Memory Cache

* For native (e.g., ext3), read/written data in
page cache

* For user fs, libfuse and userfs both have data
in page cache, too (extra copies) — useful since
make overall more efficient, but reduce size of
usable cache

Outline
* Introduction (done)
* Background (done)
* FUSE overview (done)
* Programming for FS (next)

* Benchmarking
¢ Results
¢ Conclusion

Language Bindings

* 20 language bindings — can build userfs in
many languages
— C++ or C# for high-perf, 00

— Haskell and OCaml for higher order functions
(functional languages)

— Erlang for fault tolerant, real-time, distributed
(parallel programming)

— Python for rapid development (many libraries)
* JavaFuse [27] built by authors

4/15/2014

Java Fuse

* Provides Java interface using Java Native Interface
(JNI) to communicate from Java to C

* Developer writes file system as Java class

* Register with JavaFuse using command line
parameter

* JavaFuse gets callback, sends to Java class

* Note, C to Java may mean more copies
— Could have “file” meta-data only option
— Could use JNI non-blocking 1/0 package to avoid
->But both limit portability and are not thread safe

Outline
* Introduction (done)
* Background (done)
* FUSE overview (done)
* Programming for FS (done)
* Benchmarking (next)

¢ Results
¢ Conclusion

Benchmarking Methodology (1 of 2)

* Microbenchmarks — raw throughput of low-level
operations (e.g., read())

¢ Use Bonnie [3], basic OS benchmark tool

* 6 phases:

write file with putc (), one char at a time

write from scratch same file, with 16 KB blocks

read file with getc(), one char at a time

read file, with 16 KB blocks

clear cache, repeat getc(), one char at a time

clear cache, repeat read with 16 KB blocks

oV s WwWN e

Benchmarking Methodology (2 of 2)

* Macrobenchmarks — application performance for
common apps

e Use Postmark — small file workloads by email, news,
Web-based commerce under heavy load
— Heavy stress of file and meta-data

— Generate initial pool of random text files (used 5000, from
1 KB to 64 KB)

— Do transactions on files (used 50k transactions, typical
Web server workload [39])

* Large file copy — copy 1.1 GB movie using cp
— Single, large file as for typical desktop computer or server

4/15/2014

Testbed Configurations

Native — ext4 file system

FUSE — null FUSE file system in C (passes each
call to native file system)

JavaFusel (metadata-only) — null file system in
JavaFuse, does not copy read() and
write() over JNI

JavaFuse2 (copy all data) — copies all over JNI

Experimental Setup

* P4, 3.4 GHz, 512 MB RAM (increased to 2 GB

for macrobenchmarks), 320 GB Seagate HD

* Maximum sustained throughput on disk is 115

MB/s

—So, any reported throughputs above 115 MB/s
must benefit from cache

* Linux 2.6.30.5, FUSE 2.8.0-prel

Outline
Introduction (done)
Background (done)
FUSE overview (done)
Programming for FS (done)
Benchmarking (done)
Results (next)

Conclusion

100000

Native —+— Z
FUSE
JavaFusel - —
6000 |- JavaFuse2 @ Q
g — O
E 60000 - 1 O
b D
5
£ S
g 40000 O
£
= a B g >0
20000 | 3
Q)
0 L L L L _‘
0 100 200 300 400 500 A
File Size (MB) x
(a) Per-character sequential output.)
e FUSE ~25% overhead (é
— Context switches —_—
* JavaFuse more overhead (context switches between JNI &"

and C), and doing copies not much worse than metadata

4/15/2014

4/15/2014

Throughput (KB/sec)

File Size (MB)
(b) Block sequential output.

File Size (MB)
(¢) Per-character sequential input.

¢ Native much faster than FUSE for small files (written to
memory)

* For large cache, written to disk which dominates

* Data already in page cache, so fast for all

¢ Spikes are when 512 MB RAM exhausted (FUSE has two
copies, so earlier around 225)

: : : . 100000 : . : :
i — < i — <
15:00 java;use; E | —_ java;use1 p—
lavaFuse: L] lavaFuse2 @
(@] 80000 |- - (@)
— —
800000
o o
(on @ eoo00f O
600000 D £ D
]
= 5 40000 2
400000 (@] 3 (@)
- £ >
200000 3 20000 = 1 3
Q) Q)
— —
. . . 3 ~
°o 100 200 300 400 500 0 100 200 300 400 500 A
(7] (75}
C C
(ol (ol
(7] w

Throughput (KB/sec)

* When cache cleared, starts lower gets higher for larger
— Kernel optimizes for sequential read

* FUSE does better — think it’s because fusefs and ext4 both
read-ahead

« For native, can cached up to 500 MB

* ForJava, spike is caused by artificial nature of benchmark
(previous version still in cache)

120000 -
40406 - - - - Native —+—
Native —+— z FUSE z
FUSE - JavaFuse1 -
3.5e+06 JavaFuse1 - — 100000 JavaFuse2 & —
JavaFuse2 n n
— _ —
3e+06 o T sooo0 | o
E L & -3 *
2.56+06 O 4 - Shader O
S 60000 f
sor06 D g)
e+ [=2
> Dk S
£ 40000
1.50406 (3_ g O
16+06 3 20000 - 3
500000 Q 5)) . . Q)
- 0 100 200 300 400 500 -
o)) S ——— ~ File Size (MB) A
0 100 200 300 400 (e) Per-character sequential ot t (page cache cleared).
File Size (MB) o]) o)
(d) Block sequential input. D input)
wn wn
—+ —+
(7] wn

10

Throughput (KB/sec)

120000

100000 - JavaFuse2

Native —+—
FUSE ---s---
JavaFusel &

80000

60000 ff

40000

20000

0

0 100 200 300 400
File Size (MB)
(f) Block sequential input (page cache cleared).

Native gets same benefit as FUSE, so no apparent

500

S3|NSay YJewyouaqoJdiin

Postmark

200

Native m—

FUSE mmmm |
JavaFusel
JavaFuse? mmmmm

175

Execution Time (Seconds)

* FUSE overhead less than 10%

* Java overhead about 60%
— Greater CPU and memory use

S3|NSaY YJewyouaqoLde |

difference
Copy 1.1 GB File
50 > z
Native QO
FUSE ===
— JavaFuse! mmmmm (@]
¥ 40 JavaFuse2 mmmmm =3
8 o
2 (on
& 20 D
g S
= (@]
§ >
3
S 10 Q
=
~
. X
D
(7]
[
~—t
(7]

FUSE comparable to native (~30%)
Java overhead minimal over FUSE

Conclusion

FUSE may be feasible depending upon workload
Performance comparable to in-kernel for large,
sustained 1/0

Overhead noticeable for large number of meta
data (e.g., Web and many clients)

Adequate for PCs and small servers for /0
transfer

Additional language (Java) incurred additional
overhead

— But overhead can be reduced with optimizations (e.g.,
shared buffers)

4/15/2014

11

