
4/15/2014

1

Performance and Extension of 

User Space File

Aditya Raigarhia and Ashish Gehani

Stanford and SRI

ACM Symposium on Applied Computing (SAC)

Sierre, Switzerland, March 22-26, 2010

Introduction (1 of 2)

• Developing in-kernel file systems challenging

– Understand and deal with kernel code and data 
structures

– Steep learning curve for kernel development

• No memory protection

• No use of debuggers

• Must be in C

• No standard C library

• In-kernel implementations not so great

– Porting to other flavors of Unix can be difficult

– Needs root to mount – tough to use/test on servers

Introduction (2 of 2)

• Modern file system research adds functionality 
over basic systems, rather than designing low-
level systems

– Ceph [37] – distributed file system for performance 
and reliability – uses client in users space

• Programming in user space advantages

– Wide range of languages

– Use of 3rd party tools/libraries

– Fewer kernel quirks (although still need to couple user 
code to kernel system calls)

Introduction - FUSE

• File system in USEr space (FUSE) – framework for Unix-
like OSes

• Allows non-root users to develop file systems in user 
space

• API for interface with kernel, using fs-type operations

• Many different programming language bindings

• FUSE file systems can be mounted by non-root users

• Can compile without re-compiling kernel

• Examples

– WikipediaFS [2] lets users view/edit Wikipedia articles as if 
local files

– SSHFS access via SFTP protocol



4/15/2014

2

Problem Statement

• Prevailing view – user space file systems suffer 

significantly lower performance compared to 

kernel

– Overhead from context switch, memory copies

• Perhaps changed due to processor, memory and 

bus speeds?

• Regular enhancements also contribute to 

performance?

• Either way – measurement of “prevailing view”

Outline

• Introduction (done)

• Background (next)

• FUSE overview

• Programming for FS

• Benchmarking

• Results

• Conclusion

Background – Operating Systems

• Microkernel (Mach [10], Spring [11]) have only 

basic services in kernel

– File systems (and other services) in user space

– But performance is an issue, not widely deployed

• Extensible OSes (Spin[1], Vino[4]) export OS 

interfaces

– User level code can modify run-time behavior

– Still in research phase 

Background – Stackable FS

• Stackable file systems [28] allow new features to 
be added incrementally

– FiST [40] allows file systems to be described using 
high-level language

– Code generation makes kernel modules – no 
recompilation required

• But 

– cannot do low-level operations (e.g., block layout on 
disk, metatdata for i-nodes)

– Still require root to load



4/15/2014

3

Background – NFS Loopback

• NFS loopback servers [24] puts server in user-

space with client

– Provides portability

– Good performance

• But 

– Limited to NFS weak cache consistency

– Uses OS network stack, which can limit 

performance

Background - Misc

• Coda [29] is distributes file system
– Venus cache manager in user space

– Arla [38] has AFS user-space daemon

– But not widespread

• ptrace() – process trace 
– Working infrastructure for user-level FS

– Can interacept anything

– But significant overhead

• puffs [15] similar to FUSE but NetBSD
– FUSE built on puffs for some systems

– But puffs not as widespreadh

Background – FUSE contrast

• FUSE similar since loadable kernel module

• Unlike others is mainstream – part of Linux 

since 2.6.14, ports to Mac OSX, OpenSolaris, 

FreeBSD and NetBSD

– Reduces risk of obsolete once developed

• Licensing flexible – free and commercial

• Widely used (examples next)

Background – FUSE in Use

• TierStore [6] distributed file system to simply 

deployment of apps in unreliable networks

– Uses FUSE

• Increasing trend for dual OS (Win/Linux)

– NTFS-3G [25] open source NTFS uses FUSE

– ZFS-FUSE [41] is port of Zeta FS to Linux

– VMWare disk mount [36] uses FUSE on Linux



4/15/2014

4

FUSE Example – SSHFS on Linux

https://help.ubuntu.com/community/SSHFS

% mkdir ccc

% sshfs -o idmap=user claypool@ccc.wpi.edu:/home/claypool ccc

% fusermount -u ccc

Outline

• Introduction (done)

• Background (done)

• FUSE overview (next)

• Programming for FS

• Benchmarking

• Results

• Conclusion

FUSE Overview
• On userfs mount, FUSE 

kernel module registers 
with VFS
– e.g., call to “sshfs”

• userfs provides callback 
functions

• All file system calls (e.g., 
read()) proceed normally 
from other process

• When targeted at FUSE dir, 
go through FUSE module

• If in page cache, return

• Otherwise, to userfs via 
/dev/fuse and libfuse

• userfs can do anything 
(e.g., request data from 
ext3 and add stuff) before 
returning data

• fusermount allows non-

root users to mount

FUSE APIs for User FS

• Low-level

– Resembles VFS – user fs handles i-nodes, pathname 

translations, fill buffer, etc.

– Useful for “from scratch” file systems (e.g., ZFS-FUSE) 

• High-level

– Resembles system calls

– User fs only deals with pathnames, not i-nodes

– libfuse does i-node to path translation, fill buffer

– Useful when adding additional functionality



4/15/2014

5

FUSE – Hello World Example

~/fuse/example$ mkdir /tmp/fuse

~/fuse/example$ ./hello /tmp/fuse

~/fuse/example$ ls -l /tmp/fuse

total 0

-r--r--r-- 1 root root 13 Jan 1 1970 hello

~/fuse/example$ cat /tmp/fuse/hello

Hello World!

~/fuse/example$ fusermount -u /tmp/fuse

~/fuse/example$

http://fuse.sourceforge.net/helloworld.html

Run

Flow

FUSE – Hello World (1 of 4)

Callback operations

Invoking 

does ‘mount’

http://fuse.sourceforge.net/helloworld.html

FUSE – Hello World (2 of 4)

http://fuse.sourceforge.net/helloworld.html

Fill in file status structure 

(type, permissions)

Check that path is right

Check permissions right (read only)

Check that path is right

Copy data to buffer

http://fuse.sourceforge.net/helloworld.html



4/15/2014

6

http://fuse.sourceforge.net/helloworld.html

Copy in directory listings

FUSE – Hello World (4 of 4) Performance Overhead of FUSE : 

Switching

• When using native (e.g., ext3)

– Two user-kernel mode switches (to and from)

• Relatively fast since only privilege/unpriviledge

– No context switches between processes/address 
space

• When using FUSE

– Four user-kernel mode switches (adds up to userfs
and back)

– Two context switches (user process and userfs)

• Cost depends upon cores, registers, page table, pipeline

Performance Overhead of FUSE : 

Reading

• FUSE used to have 4 KB read size

– If memory constrained, large reads would do 

many context switch each read

• swap out userfs, bring in page, swap in userfs, continue 

request, swap out userfs, bring in next page …

• FUSE now reads in 128 KB chunks with 

big_writes mount option

– Most Unix utilities (cp, cat, tar) use 32 KB file 

buffers

Performance Overhead of FUSE : 

Time for Writing
(Write 16 MB file)

Note, benefit from 4KB to 32KB, but not 32KB to 128KB



4/15/2014

7

Performance Overhead of FUSE : 

Memory Copying

• For native (e.g., ext3), write copies from 

application to kernel page cache (1x)

• For user fs, write copies from application to 

page cache, then from page cache to libfuse, 

then libfuse to userfs (3x)

• direct_io mount option – bypass page 

cache, user copy directly to userfs (1x)

– But reads can never come from kernel page cache!

Performance Overhead of FUSE : 

Memory Cache

• For native (e.g., ext3), read/written data in 

page cache

• For user fs, libfuse and userfs both have data 

in page cache, too (extra copies) – useful since 

make overall more efficient, but reduce size of 

usable cache

Outline

• Introduction (done)

• Background (done)

• FUSE overview (done)

• Programming for FS (next)

• Benchmarking

• Results

• Conclusion

Language Bindings

• 20 language bindings – can build userfs in 
many languages

– C++ or C# for high-perf, OO

– Haskell and OCaml for higher order functions 
(functional languages)

– Erlang for fault tolerant, real-time, distributed 
(parallel programming)

– Python for rapid development (many libraries)

• JavaFuse [27] built by authors



4/15/2014

8

Java Fuse

• Provides Java interface using Java Native Interface 
(JNI) to communicate from Java to C

• Developer writes file system as Java class

• Register with JavaFuse using command line 
parameter

• JavaFuse gets callback, sends to Java class

• Note, C to Java may mean more copies
– Could have “file” meta-data only option

– Could use JNI non-blocking I/O package to avoid

�But both limit portability and are not thread safe

Outline

• Introduction (done)

• Background (done)

• FUSE overview (done)

• Programming for FS (done)

• Benchmarking (next)

• Results

• Conclusion

Benchmarking Methodology (1 of 2)

• Microbenchmarks – raw throughput of low-level 
operations (e.g., read())

• Use Bonnie [3], basic OS benchmark tool

• 6 phases:

1. write file with putc(), one char at a time

2. write from scratch same file, with 16 KB blocks

3. read file with getc(), one char at a time

4. read file, with 16 KB blocks

5. clear cache, repeat getc(), one char at a time

6. clear cache, repeat read with 16 KB blocks

Benchmarking Methodology (2 of 2)

• Macrobenchmarks – application performance for 
common apps

• Use Postmark – small file workloads by email, news, 
Web-based commerce under heavy load

– Heavy stress of file and meta-data

– Generate initial pool of random text files (used 5000, from 
1 KB to 64 KB)

– Do transactions on files (used 50k transactions, typical 
Web server workload [39])

• Large file copy – copy 1.1 GB movie using cp

– Single, large file as for typical desktop computer or server



4/15/2014

9

Testbed Configurations

• Native – ext4 file system

• FUSE – null FUSE file system in C (passes each 

call to native file system)

• JavaFuse1 (metadata-only) – null file system in 

JavaFuse, does not copy read() and 

write() over JNI

• JavaFuse2 (copy all data) – copies all over JNI

Experimental Setup

• P4, 3.4 GHz, 512 MB RAM (increased to 2 GB 

for macrobenchmarks), 320 GB Seagate HD

• Maximum sustained throughput on disk is 115 

MB/s

– So, any reported throughputs above 115 MB/s 

must benefit from cache

• Linux 2.6.30.5, FUSE 2.8.0-pre1

Outline

• Introduction (done)

• Background (done)

• FUSE overview (done)

• Programming for FS (done)

• Benchmarking (done)

• Results (next)

• Conclusion

M
icro

b
e

n
ch

m
a

rk
R

e
su

lts

• FUSE ~25% overhead
– Context switches

• JavaFuse more overhead (context switches between JNI 
and C), and doing copies not much worse than metadata



4/15/2014

10

M
icro

b
e

n
ch

m
a

rk
R

e
su

lts

• Native much faster than FUSE for small files (written to 
memory)

• For large cache, written to disk which dominates 

M
icro

b
e

n
ch

m
a

rk
R

e
su

lts

• Data already in page cache, so fast for all

• Spikes are when 512 MB RAM exhausted (FUSE has two 
copies, so earlier around 225)

M
icro

b
e

n
ch

m
a

rk
R

e
su

lts

• For native, can cached up to 500 MB

• For Java, spike is caused by artificial nature of benchmark 
(previous version still in cache)

M
icro

b
e

n
ch

m
a

rk
 R

e
su

lts

• When cache cleared, starts lower gets higher for larger
– Kernel optimizes for sequential read

• FUSE does better – think it’s because fusefs and ext4 both 
read-ahead

input



4/15/2014

11

M
icro

b
e

n
ch

m
a

rk
R

e
su

lts

• Native gets same benefit as FUSE, so no apparent 

difference

M
a

cro
b

e
n

ch
m

a
rk

R
e

su
lts

• FUSE overhead less than 10%

• Java overhead about 60%

– Greater CPU and memory use

Postmark

M
a

cro
b

e
n

ch
m

a
rk

 R
e

su
lts

Copy 1.1 GB File

• FUSE comparable to native (~30%)

• Java overhead minimal over FUSE

Conclusion

• FUSE may be feasible depending upon workload

• Performance comparable to in-kernel for large, 
sustained I/O

• Overhead noticeable for large number of meta 
data (e.g., Web and many clients)

• Adequate for PCs and small servers for I/O 
transfer

• Additional language (Java) incurred additional 
overhead
– But overhead can be reduced with optimizations (e.g., 

shared buffers)


