
54 September 2005 QUEUE rants: feedback@acmqueue.com

Software
and the
Concurrency
Revolution

Leveraging the full power
of multicore processors demands
new tools and new thinking
from the software industry.

Concurrency has long been touted as the “next
big thing” and “the way of the future,” but for the past
30 years, mainstream software development has been
able to ignore it. Our parallel future has finally arrived:
new machines will be parallel machines, and this will
require major changes in the way we develop software.

The introductory article in this issue (“The Future
of Microprocessors” by Kunle Olukotun and Lance
Hammond) describes the hardware imperatives behind
this shift in computer architecture from uniprocessors
to multicore processors, also known as CMPs (chip
multiprocessors). (For related analysis, see “The Free
Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software.”1)

In this article we focus on the implications of con-
currency for software and its consequences for both
programming languages and programmers.

The hardware changes that Olukotun and Ham-
mond describe represent a fundamental shift in
computing. For the past three decades, improvements
in semiconductor fabrication and processor implemen-
tation produced steady increases in the speed at which
computers executed existing sequential programs. The
architectural changes in multicore processors benefit
only concurrent applications and therefore have little
value for most existing mainstream software. For the
foreseeable future, today’s desktop applications will

HERB SUTTER AND JAMES LARUS, MICROSOFT

 QUEUE September 2005 55 more queue: www.acmqueue.com

MultiprocessorsFO
CU

S

56 September 2005 QUEUE rants: feedback@acmqueue.com

not run much faster than they do now. In fact, they may
run slightly slower on newer chips, as individual cores
become simpler and run at lower clock speeds to reduce
power consumption on dense multicore processors.

That brings us to a fundamental turning point in
software development, at least for mainstream software.
Computers will continue to become more and more
capable, but programs can no longer simply ride the
hardware wave of increasing performance unless they are
highly concurrent.

Although multicore performance is the forcing
function, we have other reasons to want concurrency:
notably, to improve responsiveness by performing work
asynchronously instead of synchronously. For example,
today’s applications must move work off the GUI thread
so it can redraw the screen while a computation runs in
the background.

But concurrency is hard. Not only are today’s lan-
guages and tools inadequate to transform applications
into parallel programs, but also it is difficult to find
parallelism in mainstream applications, and—worst of
all—concurrency requires programmers to think in a way
humans find difficult.

Nevertheless, multicore machines are the future, and
we must figure out how to program them. The rest of this
article delves into some of the reasons why it is hard, and
some possible directions for solutions.

CONSEQUENCES: A NEW ERA IN SOFTWARE
Today’s concurrent programming languages and tools are
at a level comparable to sequential programming at the
beginning of the structured programming era. Sema-
phores and coroutines are the assembler of concurrency,
and locks and threads are the slightly higher-level struc-
tured constructs of concurrency. What we need is OO for
concurrency—higher-level abstractions that help build
concurrent programs, just as object-oriented abstractions
help build large componentized programs.

For several reasons, the concurrency revolution is
likely to be more disruptive than the OO revolution.

First, concurrency will be integral to higher performance.
Languages such as C ignored OO and remained usable for
many programs. If concurrency becomes the sole path to
higher-performance hardware, commercial and systems
programming languages will be valued on their support
for concurrent programming. Existing languages, such as
C, will gain concurrent features beyond simple models
such as pthreads. Languages that fail to support concur-
rent programming will gradually die away and remain
useful only when modern hardware is unimportant.

The second reason that concurrency will be more
disruptive than OO is that, although sequential program-
ming is hard, concurrent programming is demonstrably
more difficult. For example, context-sensitive analysis of
sequential programs is a fundamental technique for tak-
ing calling contexts into account when analyzing a pro-
gram. Concurrent programs also require synchronization
analysis, but simultaneously performing both analyses is
provably undecidable.2

Finally, humans are quickly overwhelmed by concur-
rency and find it much more difficult to reason about
concurrent than sequential code. Even careful people
miss possible interleavings among simple collections of
partially ordered operations.

DIFFERENCES BETWEEN CLIENT AND
SERVER APPLICATIONS
Concurrency is a challenging issue for client-side applica-
tions. For many server-based programs, however, concur-
rency is a “solved problem,” in that we routinely architect
concurrent solutions that work well, although program-
ming them and ensuring they scale can still require a
huge effort. These applications typically have an abun-
dance of parallelism, as they simultaneously handle many
independent request streams. For example, a Web server
or Web site independently executes thousands of copies
of the same code on mostly nonoverlapping data.

In addition, these executions are well isolated and
share state via an abstract data store, such as a database
that supports highly concurrent access to structured data.
The net effect is that code that shares data through a
database can keep its “peaceful easy feeling”—the illusion
of living in a tidy, single-threaded universe.

The world of client applications is not nearly as well
structured and regular. A typical client application exe-
cutes a relatively small computation on behalf of a single
user, so concurrency is found by dividing a computa-
tion into finer pieces. These pieces, say the user interface
and program’s computation, interact and share data in
myriad ways. What makes this type of program difficult

Software
and the
Concurrency
Revolution

 QUEUE September 2005 57 more queue: www.acmqueue.com

to execute concurrently are nonhomogeneous code; fine-
grained, complicated interactions; and pointer-based data
structures.

PROGRAMMING MODELS
Today, you can express parallelism in a number of differ-
ent ways, each applicable to only a subset of programs.
In many cases, it is difficult, without careful design and
analysis, to know in advance which model is appropriate
for a particular problem, and it is always tricky to com-
bine several models when a given application does not fit
cleanly into a single paradigm.

These parallel programming models differ significantly
in two dimensions: the granularity of the parallel opera-
tions and the degree of coupling between these tasks. Dif-
ferent points in this space favor different programming
models, so let’s examine these axes in turn.

Operations executed in parallel can range from single
instructions, such as addition or multiplication, to com-
plex programs that take hours or days to run. Obviously,
for small operations, the overhead costs of the parallel
infrastructure are significant; for example, parallel instruc-
tion execution generally requires hardware support.
Multicore processors reduce communication and syn-
chronization costs, as compared with conventional mul-
tiprocessors, which can reduce the overhead burden on
smaller pieces of code. Still, in general, the finer grained
the task, the more attention must be paid to the cost of
spawning it as a separate task and providing its communi-
cation and synchronization.

The other dimension is the degree of coupling in the
communication and synchronization between the opera-
tions. The ideal is none: operations run entirely inde-
pendently and produce distinct outputs. In this case, the
operations can run in any order, incur no synchroniza-
tion or communications costs, and are easily programmed
without the possibility of data races. This state of affairs
is rare, as most concurrent programs share data among
their operations. The complexity of ensuring correct and
efficient operation increases as the operations become
more diverse. The easiest case is executing the same code
for each operation. This type of sharing is often regular
and can be understood by analyzing only a single task.
More challenging is irregular parallelism, in which the
operations are distinct and the sharing patterns are more
difficult to comprehend.

INDEPENDENT PARALLELISM
Perhaps the simplest and best-behaved model is indepen-
dent parallelism (sometimes called “embarrassingly paral-

lel tasks”), in which one or more operations are applied
independently to each item in a data collection.

Fine-grained data parallelism relies on the indepen-
dence of the operations executed concurrently. They
should not share input data or results and should be
executable without coordination. For example:

double A[100][100];
…
A = A * 2;

multiplies each element of a 100x100 array by 2 and
stores the result in the same array location. Each of the
10,000 multiplications proceeds independently and with-
out coordination with its peers. This is probably more
concurrency than necessary for most computers, and
its granularity is very fine, so a more practical approach
would partition the matrix into n x m blocks and execute
the operations on the blocks concurrently.

At the other end of the granularity axis, some applica-
tions, such as search engines, share only a large read-only
database, so concurrently processing queries requires no
coordination. Similarly, large simulations, which require
many runs to explore a large space of input parameters,
are another embarrassingly parallel application.

REGULAR PARALLELISM
The next step beyond independent parallelism is to apply
the same operation to a collection of data when the com-
putations are mutually dependent. An operation on one
piece of data is dependent on another operation if there
is communication or synchronization between the two
operations.

For example, consider a stencil computation that
replaces each point in an array, the average of its four
nearest neighbors:

A[i, j] = (A[i-1, j] + A[i, j-1] + A[i+1, j] + A[i, j+1]) / 4;

This computation requires careful coordination to ensure
that an array location is read by its neighbors before
being replaced by its average. If space is no concern,
then the averages can be computed into a new array. In
general, other more structured computation strategies,
such as traversing the array in a diagonal wavefront, will
produce the same result, with better cache locality and
lower memory consumption.

Regular parallel programs may require synchronization
or carefully orchestrated execution strategies to produce
the correct results, but unlike general parallelism, the

58 September 2005 QUEUE rants: feedback@acmqueue.com

code behind the operations can be analyzed to determine
how to execute them concurrently and what data they
share. This advantage is sometimes hypothetical, since
program analysis is an imprecise discipline, and suffi-
ciently complex programs are impossible for compilers to
understand and restructure.

At the other end of the granularity axis, computa-
tions on a Web site are typically independent except for
accesses to a common database. The computations run
in parallel without a significant amount of coordination
beyond the database transactions. This ensures that con-
current access to the same data is consistently resolved.

UNSTRUCTURED PARALLELISM
The most general, and least disciplined, form of parallel-
ism is when the concurrent computations differ, so that
their data accesses are not predictable and need to be
coordinated through explicit synchronization. This is the
form of parallelism most common in programs written
using threads and explicit synchronization, in which
each thread has a distinct role in the program. In general,
it is difficult to say anything specific about this form of
parallelism, except that conflicting data accesses in two
threads need explicit synchronization; otherwise, the
program will be nondeterministic.

THE PROBLEM OF SHARED STATE, AND
WHY LOCKS AREN’T THE ANSWER
Another challenging aspect of unstructured parallelism is
sharing unstructured state. A client application typically
manipulates shared memory organized as unpredictably
interconnected graphs of objects.

When two tasks try to access the same object, and one
could modify its state, if we do nothing to coordinate
the tasks, we have a data race. Races are bad, because the
concurrent tasks can read and write inconsistent or cor-
rupted values.

There are a rich variety of synchronization devices
that can prevent races. The simplest of these is a lock.
Each task that wants to access a piece of shared data must

acquire the lock for that data, perform its computation,
and then release the lock so other operations on the data
can proceed. Unfortunately, although locks work, they
pose serious problems for modern software development.

A fundamental problem with locks is that they are
not composable. You can’t take two correct lock-based
pieces of code, combine them, and know that the result is
still correct. Modern software development relies on the
ability to compose libraries into larger programs, and so it
is a serious difficulty that we cannot build on lock-based
components without examining their implementations.

The composability issue arises primarily from the
possibility of deadlock. In its simplest form, deadlock
happens when two locks might be acquired by two tasks
in opposite order: task T1 takes lock L1, task T2 takes lock
L2, and then T1 tries to take L2 while T2 tries to take L1.
Both block forever. Because this can happen any time
two locks can be taken in opposite order, calling into
code you don’t control while holding a lock is a recipe for
deadlock.

That is exactly what extensible frameworks do, how-
ever, as they call virtual functions while holding a lock.
Today’s best-of-breed commercial application frameworks
all do this, including the .NET Frameworks and the Java
standard libraries. We have gotten away with it because
developers aren’t yet writing lots of heavily concur-
rent programs that do frequent locking. Many complex
models attempt to deal with the deadlock problem—with
backoff-and-retry protocols, for example—but they
require strict discipline by programmers, and some intro-
duce their own problems (e.g., livelock).

Techniques for avoiding deadlock by guarantee-
ing locks will always be acquired in a safe order do not
compose, either. For example, lock leveling and lock
hierarchies prevent programs from acquiring locks in con-
flicting order by requiring that all locks at a given level be
acquired at once in a predetermined order, and that while
holding locks at one level, you can acquire additional
locks only at higher levels. Such techniques work inside
a module or framework maintained by a team (although
they’re underused in practice), but they assume control
of an entire code base. That severely restricts their use in
extensible frameworks, add-in systems, and other situa-
tions that bring together code written by different parties.

A more basic problem with locks is that they rely on
programmers to strictly follow conventions. The rela-
tionship between a lock and the data that it protects is
implicit, and it is preserved only through programmer
discipline. A programmer must always remember to take
the right lock at the right point before touching shared

Software
and the
Concurrency
Revolution

 QUEUE September 2005 59 more queue: www.acmqueue.com

data. Conventions governing locks in a program are
sometimes written down, but they’re almost never stated
precisely enough for a tool to check them.

Locks have other more subtle problems. Locking is
a global program property, which is difficult to localize
to a single procedure, class, or framework. All code that
accesses a piece of shared state must know and obey the
locking convention, regardless of who wrote the code or
where it resides.

Attempts to make synchronization a local property
do not work all the time. Consider a popular solution
such as Java’s synchronized methods. Each of an object’s
methods can take a lock on the object, so no two threads
can directly manipulate the object’s state simultaneously.
As long as an object’s state is accessed only by its meth-
ods and programmers remember to add the synchronized
declaration, this approach works.

There are at least three major problems with synchro-
nized methods. First, they are not appropriate for types
whose methods call virtual functions on other objects
(e.g., Java’s Vector and .NET’s SyncHashTable), because
calling into third-party code while holding a lock opens
the possibility of deadlock. Second, synchronized methods
can perform too much locking, by acquiring and releas-
ing locks on all object instances, even those never shared
across threads (typically the majority). Third, synchro-
nized methods can also perform too little locking, by
not preserving atomicity when a program calls multiple
methods on an object or on different objects. As a simple
example of the latter, consider a banking transfer:

account1.Credit(amount); account2.Debit(amount)

Per-object locking protects each call, but does not prevent
another thread from seeing the inconsistent state of the
two accounts between the calls. Operations of this type,
whose atomicity does not correspond to a method call
boundary, require additional, explicit synchronization.

LOCK ALTERNATIVES
For completeness, we note two major alternatives to
locks. The first is lock-free programming. By relying on a
deep knowledge of a processor’s memory model, it is pos-
sible to create data structures that can be shared without
explicit locking. Lock-free programming is difficult and
fragile; inventing a new lock-free data-structure imple-
mentation is still often a publishable result.

The second alternative is transactional memory, which
brings the central idea of transactions from databases
into programming languages. Programmers write their

programs as a series of explicitly atomic blocks, which
appear to execute indivisibly, so concurrently execut-
ing operations see the shared state strictly before or after
an atomic action executes. Although many people view
transactional memory as a promising direction, it is still a
subject of active research.

WHAT WE NEED IN PROGRAMMING LANGUAGES
We need higher-level language abstractions, including
evolutionary extensions to current imperative languages,
so that existing applications can incrementally become
concurrent. The programming model must make concur-
rency easy to understand and reason about, not only dur-
ing initial development but also during maintenance.

EXPLICIT, IMPLICIT, AND AUTOMATIC PARALLELIZATION
Explicit programming models provide abstractions that
require programmers to state exactly where concurrency
can occur. The major advantage of expressing concur-
rency explicitly is that it allows programmers to take full
advantage of their application domain knowledge and
express the full potential concurrency in the application.
It has drawbacks, however. It requires new higher-level
programming abstractions and a higher level of program-
mer proficiency in the presence of shared data.

Implicit programming models hide concurrency
inside libraries or behind APIs, so that a caller retains a
sequential worldview while the library performs the work
in parallel. This approach lets naïve programmers safely
use concurrency. Its main drawback is that some kinds of
concurrency-related performance gains can’t be realized
this way. Also, it is difficult to design interfaces that do
not expose the concurrency in any circumstance—for
example, when a program applies the operation to several
instances of the same data.

Another widely studied approach is automatic paral-
lelization, where a compiler attempts to find parallel-
ism, typically in programs written in a conventional
language such as Fortran. As appealing as it may seem,
this approach has not worked well in practice. Accurate
program analysis is necessary to understand a program’s
potential behavior. This analysis is challenging for simple
languages such as Fortran, and far more difficult for
languages, such as C, that manipulate pointer-based data.
Moreover, sequential programs often use sequential algo-
rithms and contain little concurrency.

IMPERATIVE AND FUNCTIONAL LANGUAGES.
Popular commercial programming languages (e.g., Pascal,
C, C++, Java, C#) are imperative languages in which a

60 September 2005 QUEUE rants: feedback@acmqueue.com

programmer specifies step-by-step changes to variables
and data structures. Fine-grained control constructs (e.g.,
for loops), low-level data manipulations, and shared
mutable object instances make programs in these lan-
guages difficult to analyze and automatically parallelize.

The common belief is that functional languages, such
as Scheme, ML, or Haskell, could eliminate this difficulty
because they are naturally suited to concurrency. Pro-
grams written in these languages manipulate immutable
object instances, which pose no concurrency hazards.
Moreover, without side effects, programs seem to have
fewer constraints on execution order.

In practice, however, functional languages are not
necessarily conducive to concurrency. The parallelism
exposed in functional programs is typically at the level
of procedure calls, which is impractically fine-grained for
conventional parallel processors. Moreover, most func-
tional languages allow some side effects to mutable state,
and code that uses these features is difficult to parallelize
automatically.

These languages reintroduce mutable state for reasons
of expressibility and efficiency. In a purely functional lan-
guage, aggregate data structures, such as arrays or trees,
are updated by producing a copy containing a modified
value. This technique is semantically attractive but can be
terrible for performance (linear algorithms easily become
quadratic). In addition, functional updates do nothing to
discourage the writing of a strictly sequential algorithm,
in which each operation waits until the previous opera-
tion updates the program’s state.

The real contribution of functional languages to
concurrency comes in the higher-level programming
style commonly employed in these languages, in which
operations such as map or map-reduce apply computa-
tions to all elements of an aggregate data structure. These
higher-level operations are rich sources of concurrency.
This style of programming, fortunately, is not inherently
tied to functional languages, but is valuable in imperative
programs.

For example, Google Fellows Jeffrey Dean and Sanjay

Ghemawat describe how Google uses Map-Reduce to
express large-scale distributed computations.3 Imperative
languages can judiciously add functional style extensions
and thereby benefit from those features. This is important
because the industry can’t just start over. To preserve the
huge investment in the world’s current software, it is
essential to incrementally add support for concurrency,
while preserving software developers’ expertise and train-
ing in imperative languages.

BETTER ABSTRACTIONS
Most of today’s languages offer explicit programming at
the level of threads and locks. These abstractions are low-
level and difficult to reason about systematically. Because
these constructs are a poor basis for building abstractions,
they encourage multithreaded programming with its
problems of arbitrary blocking and reentrancy.

Higher-level abstractions allow programmers to
express tasks with inherent concurrency, which a runtime
system can then combine and schedule to fit the hard-
ware on the actual machine. This will enable applications
that perform better on newer hardware. In addition, for
mainstream development, programmers will value the
illusion of sequential execution within a task.

Two basic examples of higher-level abstractions are
asynchronous calls and futures. An asynchronous call is a
function or method call that is nonblocking. The caller
continues executing and, conceptually, a message is sent
to a task, or fork, to execute operation independently.
A future is a mechanism for returning a result from an
asynchronous call; it is a placeholder for the value that
has not yet materialized.

Another example of a higher-level abstraction is an
active object, which conceptually runs on its own thread
so that creating 1,000 such objects conceptually cre-
ates 1,000 potential threads of execution. An active
object behaves as a monitor, in that only one method
of the object executes at a given time, but it requires no
traditional locking. Rather, method calls from outside
an active object are asynchronous messages, marshaled,
queued, and pumped by the object. Active objects have
many designs, from specialized actor languages to COM
single-threaded apartments callable from traditional C
code, and many design variables.

Other higher-level abstractions are needed, such as
protocols to describe and check asynchronous message
exchange. Together they should bring together a consis-
tent programming model that can express typical applica-
tion concurrency requirements across all of the major
granularity levels.

Software
and the
Concurrency
Revolution

 QUEUE September 2005 61 more queue: www.acmqueue.com

WHAT WE NEED IN TOOLS
Parallel programming, because of its unfamiliarity and
intrinsic difficulty, is going to require better programming
tools to systematically find defects, help debug programs,
find performance bottlenecks, and aid in testing. Without
these tools, concurrency will become an impediment that
reduces developer and tester productivity and makes con-
current software more expensive and of lower quality.

Concurrency introduces new types of programming
errors, beyond those all too familiar in sequential code.
Data races (resulting from inadequate synchronization
and deadlocks) and livelocks (resulting from improper
synchronization) are difficult defects to find and under-
stand, since their behavior is often nondeterministic and
difficult to reproduce. Conventional methods of debug-
ging, such as reexecuting a program with a breakpoint set
earlier in its execution, do not work well for concurrent
programs whose execution paths and behaviors may vary
from one execution to the next.

Systematic defect detection tools are extremely valu-
able in this world. These tools use static program analysis
to systematically explore all possible executions of a
program; thus, they can catch errors that are impossible
to reproduce. Although similar techniques, such as model
checking, have been used with great success for finding
defects in hardware, which is inherently concurrent,
software is more difficult. The state space of a typical
program is far larger than that of most hardware, so tech-
niques that systematically explore an artifact’s states have
much more work to do. In both cases, modularity and
abstraction are the keys to making the analysis tractable.
In hardware model testing, if you can break off the ALU
(arithmetic logic unit) and analyze it independently of
the register file, your task becomes much more tractable.

That brings us to a second reason why software is more
difficulty to analyze: it is far harder to carve off pieces of
a program, analyze them in isolation, and then combine
the results to see how they work together. Shared state,
unspecified interfaces, and undocumented interactions
make this task much more challenging for software.

Defect detection tools for concurrent software
comprise an active area of research. One promising
technique from Microsoft Research called KISS (Keep it
Strictly Sequential)4 transforms a threaded program into
a sequential program whose execution behavior includes
all possible interleaves of the original threads that involve
no more than two context switches. The transformed
program can then be analyzed by the large number of
existing sequential tools, which then become concurrent
defect detection tools for this bounded model.

Even with advances such as these, programmers are
still going to need good debuggers that let them under-
stand the complex and difficult-to-reproduce interac-
tions in their parallel programs. There are two general
techniques for collecting this information. The first is
better logging facilities that track which messages were
sent to which process or which thread accessed which
object, so that a developer can look back and understand
a program’s partially ordered execution. Developers
will also want the ability to follow causality trails across
threads (e.g., which messages to one active object, when
executed, led to which other messages to other active
objects?), replay and reorder messages in queues, step
through asynchronous call patterns including callbacks,
and otherwise inspect the concurrent execution of their
code. The second approach is reverse execution, which
permits a programmer to back up in a program’s execu-
tion history and reexecute some code. Replay debugging
is an old idea, but its cost and complexity have been

barriers to adoption. Recently, virtual machine monitors
have reduced both factors.5 In a concurrent world, this
technique will likely become a necessity.

Performance debugging and tuning will require new
tools in a concurrent world as well. Concurrency intro-
duces new performance bottlenecks, such as lock con-
tention, cache coherence overheads, and lock convoys,
which are often difficult to identify with simple profil-
ers. New tools that are more aware of the underlying
computer architecture and the concurrent structure of a
program will be better able to identify these problems.

Testing, too, must change. Concurrent programs,
because of their nondeterministic behaviors, are more
difficult to test. Simple code coverage metrics, which
track whether a statement or branch has executed, need
to be extended to take into account the other code that
is executing concurrently, or else testing will provide

Debugging
and tuning will require
new tools in a concurrent world as well.

62 September 2005 QUEUE rants: feedback@acmqueue.com

an unrealistically optimistic picture of how completely
a program has been exercised. Moreover, simple stress
tests will need to be augmented by more systematic
techniques that use model-checking-like techniques to
explore systems’ state spaces. For example, Verisoft has
been very successful in using these techniques to find
errors in concurrent telephone switching software.6
Today, many concurrent applications use length of stress
testing to gain confidence that the application is unlikely
to contain serious races. In the future, that will increas-
ingly be insufficient, and software developers will need to
be able to prove their product’s quality through rigorous
deterministic testing instead of relying on a probabilistic
confidence based on stress tests.

PARALLELISM IS KEY
The concurrency revolution is primarily a software revo-
lution. The difficult problem is not building multicore
hardware, but programming it in a way that lets main-
stream applications benefit from the continued exponen-
tial growth in CPU performance.

The software industry needs to get back into the state
where existing applications run faster on new hardware.
To do that, we must begin writing concurrent applica-
tions containing at least dozens, and preferably hundreds,
of separable tasks (not all of which need be active at a
given point).

Concurrency also opens the possibility of new, richer
computer interfaces and far more robust and functional
software. This requires a new burst of imagination to find
and exploit new uses for the exponentially increasing
potential of new processors.

To enable such applications, programming language
designers, system builders, and programming tool
creators need to start thinking seriously about parallel-
ism and find techniques better than the low-level tools
of threads and explicit synchronization that are today’s
basic building blocks of parallel programs. We need
higher-level parallel constructs that more clearly express a
programmer’s intent, so that the parallel architecture of a

program is more visible, easily understood, and verifiable
by tools. Q

REFERENCES
1. Sutter, H. 2005. The free lunch is over: a fundamental

turn toward concurrency in software. Dr. Dobb’s Journal
30 (3); http://www.gotw.ca/publications/concurrency-
ddj.htm.

2. Ramalingam, G. 2000. Context-sensitive synchroniza-
tion-sensitive analysis is undecidable. ACM Transactions
on Programming Languages and Systems 22 (2): 416-430.

3. Dean, J., and Ghemawat, S. 2004. MapReduce: simpli-
fied data processing on large clusters. Proceedings of the
Sixth Symposium on Operating Systems Design and Imple-
mentation, San Francisco, CA: 137-150.

4. Qadeer, S., and Wu, D. 2004. KISS: Keep it Simple and
Sequential. Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implementa-
tion, Washington, DC: 1-13.

5. King, S. T., Dunlap, G. W., and Chen, P. M. 2005.
Debugging operating systems with time-traveling
virtual machines. Proceedings of the 2005 Annual Usenix
Technical Conference, Anaheim, CA: 1-15.

6. Chandra, S., Godefroid, P., and Palm, C. 2002. Software
model checking in practice: an industrial case study.
Proceedings of the 24th International Conference on Soft-
ware Engineering, Orlando, FL: 431-441.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

HERB SUTTER is a software architect in Microsoft’s devel-
oper division. He chairs the ISO C++ standards committee,
and is the author of four books and more than 200 techni-
cal papers and articles, including the widely read “The Free
Lunch Is Over” essay on the concurrency revolution. He can
be reached at hsutter@microsoft.com.
JAMES LARUS is a senior researcher at Microsoft Research,
managing SWIG (Software Improvement Group), which
consists of the SPT (software productivity tools), TVM (test-
ing, verification, and measurement), and HIP (human inter-
actions in programming) research groups, and running the
Singularity research project. Before joining Microsoft, he was
an associate professor at the University of Wisconsin-Madi-
son, where he co-led the Wisconsin Wind Tunnel research
project. This DARPA- and NSF-funded project investigated
new approaches to building and programming parallel
shared-memory computers. Larus received his Ph.D. in com-
puter science from the University of California at Berkeley.
© 2005 ACM 1542-7730/05/0900 $5.00

Software
and the
Concurrency
Revolution

