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Software 
and the  
Concurrency  
Revolution

Leveraging the full power  
of multicore processors demands  
new tools and new thinking  
from the software industry.

Concurrency has long been touted as the “next 
big thing” and “the way of the future,” but for the past 
30 years, mainstream software development has been 
able to ignore it. Our parallel future has finally arrived: 
new machines will be parallel machines, and this will 
require major changes in the way we develop software.

The introductory article in this issue (“The Future 
of Microprocessors” by Kunle Olukotun and Lance 
Hammond) describes the hardware imperatives behind 
this shift in computer architecture from uniprocessors 
to multicore processors, also known as CMPs (chip 
multiprocessors). (For related analysis, see “The Free 
Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software.”1) 

In this article we focus on the implications of con-
currency for software and its consequences for both 
programming languages and programmers.

The hardware changes that Olukotun and Ham-
mond describe represent a fundamental shift in 
computing. For the past three decades, improvements 
in semiconductor fabrication and processor implemen-
tation produced steady increases in the speed at which 
computers executed existing sequential programs. The 
architectural changes in multicore processors benefit 
only concurrent applications and therefore have little 
value for most existing mainstream software. For the 
foreseeable future, today’s desktop applications will 

HERB SUTTER AND JAMES LARUS, MICROSOFT



 QUEUE  September 2005  55  more queue: www.acmqueue.com

MultiprocessorsFO
CU

S



56  September 2005  QUEUE rants: feedback@acmqueue.com

not run much faster than they do now. In fact, they may 
run slightly slower on newer chips, as individual cores 
become simpler and run at lower clock speeds to reduce 
power consumption on dense multicore processors.

That brings us to a fundamental turning point in 
software development, at least for mainstream software. 
Computers will continue to become more and more 
capable, but programs can no longer simply ride the 
hardware wave of increasing performance unless they are 
highly concurrent.

Although multicore performance is the forcing 
function, we have other reasons to want concurrency: 
notably, to improve responsiveness by performing work 
asynchronously instead of synchronously. For example, 
today’s applications must move work off the GUI thread 
so it can redraw the screen while a computation runs in 
the background.

But concurrency is hard. Not only are today’s lan-
guages and tools inadequate to transform applications 
into parallel programs, but also it is difficult to find 
parallelism in mainstream applications, and—worst of 
all—concurrency requires programmers to think in a way 
humans find difficult. 

Nevertheless, multicore machines are the future, and 
we must figure out how to program them. The rest of this 
article delves into some of the reasons why it is hard, and 
some possible directions for solutions.

CONSEQUENCES: A NEW ERA IN SOFTWARE
Today’s concurrent programming languages and tools are 
at a level comparable to sequential programming at the 
beginning of the structured programming era. Sema-
phores and coroutines are the assembler of concurrency, 
and locks and threads are the slightly higher-level struc-
tured constructs of concurrency. What we need is OO for 
concurrency—higher-level abstractions that help build 
concurrent programs, just as object-oriented abstractions 
help build large componentized programs.

For several reasons, the concurrency revolution is 
likely to be more disruptive than the OO revolution. 

First, concurrency will be integral to higher performance. 
Languages such as C ignored OO and remained usable for 
many programs. If concurrency becomes the sole path to 
higher-performance hardware, commercial and systems 
programming languages will be valued on their support 
for concurrent programming. Existing languages, such as 
C, will gain concurrent features beyond simple models 
such as pthreads. Languages that fail to support concur-
rent programming will gradually die away and remain 
useful only when modern hardware is unimportant.

The second reason that concurrency will be more 
disruptive than OO is that, although sequential program-
ming is hard, concurrent programming is demonstrably 
more difficult. For example, context-sensitive analysis of 
sequential programs is a fundamental technique for tak-
ing calling contexts into account when analyzing a pro-
gram. Concurrent programs also require synchronization 
analysis, but simultaneously performing both analyses is 
provably undecidable.2

Finally, humans are quickly overwhelmed by concur-
rency and find it much more difficult to reason about 
concurrent than sequential code. Even careful people 
miss possible interleavings among simple collections of 
partially ordered operations.

DIFFERENCES BETWEEN CLIENT AND  
SERVER APPLICATIONS
Concurrency is a challenging issue for client-side applica-
tions. For many server-based programs, however, concur-
rency is a “solved problem,” in that we routinely architect 
concurrent solutions that work well, although program-
ming them and ensuring they scale can still require a 
huge effort. These applications typically have an abun-
dance of parallelism, as they simultaneously handle many 
independent request streams. For example, a Web server 
or Web site independently executes thousands of copies 
of the same code on mostly nonoverlapping data.

In addition, these executions are well isolated and 
share state via an abstract data store, such as a database 
that supports highly concurrent access to structured data. 
The net effect is that code that shares data through a 
database can keep its “peaceful easy feeling”—the illusion 
of living in a tidy, single-threaded universe.

The world of client applications is not nearly as well 
structured and regular. A typical client application exe-
cutes a relatively small computation on behalf of a single 
user, so concurrency is found by dividing a computa-
tion into finer pieces. These pieces, say the user interface 
and program’s computation, interact and share data in 
myriad ways. What makes this type of program difficult 
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to execute concurrently are nonhomogeneous code; fine-
grained, complicated interactions; and pointer-based data 
structures.

PROGRAMMING MODELS
Today, you can express parallelism in a number of differ-
ent ways, each applicable to only a subset of programs. 
In many cases, it is difficult, without careful design and 
analysis, to know in advance which model is appropriate 
for a particular problem, and it is always tricky to com-
bine several models when a given application does not fit 
cleanly into a single paradigm.

These parallel programming models differ significantly 
in two dimensions: the granularity of the parallel opera-
tions and the degree of coupling between these tasks. Dif-
ferent points in this space favor different programming 
models, so let’s examine these axes in turn.

Operations executed in parallel can range from single 
instructions, such as addition or multiplication, to com-
plex programs that take hours or days to run. Obviously, 
for small operations, the overhead costs of the parallel 
infrastructure are significant; for example, parallel instruc-
tion execution generally requires hardware support. 
Multicore processors reduce communication and syn-
chronization costs, as compared with conventional mul-
tiprocessors, which can reduce the overhead burden on 
smaller pieces of code. Still, in general, the finer grained 
the task, the more attention must be paid to the cost of 
spawning it as a separate task and providing its communi-
cation and synchronization.

The other dimension is the degree of coupling in the 
communication and synchronization between the opera-
tions. The ideal is none: operations run entirely inde-
pendently and produce distinct outputs. In this case, the 
operations can run in any order, incur no synchroniza-
tion or communications costs, and are easily programmed 
without the possibility of data races. This state of affairs 
is rare, as most concurrent programs share data among 
their operations. The complexity of ensuring correct and 
efficient operation increases as the operations become 
more diverse. The easiest case is executing the same code 
for each operation. This type of sharing is often regular 
and can be understood by analyzing only a single task. 
More challenging is irregular parallelism, in which the 
operations are distinct and the sharing patterns are more 
difficult to comprehend.

INDEPENDENT PARALLELISM 
Perhaps the simplest and best-behaved model is indepen-
dent parallelism (sometimes called “embarrassingly paral-

lel tasks”), in which one or more operations are applied 
independently to each item in a data collection.

Fine-grained data parallelism relies on the indepen-
dence of the operations executed concurrently. They 
should not share input data or results and should be 
executable without coordination. For example:

double A[100][100];
…
A = A * 2;

multiplies each element of a 100x100 array by 2 and 
stores the result in the same array location. Each of the 
10,000 multiplications proceeds independently and with-
out coordination with its peers. This is probably more 
concurrency than necessary for most computers, and 
its granularity is very fine, so a more practical approach 
would partition the matrix into n x m blocks and execute 
the operations on the blocks concurrently.

At the other end of the granularity axis, some applica-
tions, such as search engines, share only a large read-only 
database, so concurrently processing queries requires no 
coordination. Similarly, large simulations, which require 
many runs to explore a large space of input parameters, 
are another embarrassingly parallel application.

REGULAR PARALLELISM
The next step beyond independent parallelism is to apply 
the same operation to a collection of data when the com-
putations are mutually dependent. An operation on one 
piece of data is dependent on another operation if there 
is communication or synchronization between the two 
operations. 

For example, consider a stencil computation that 
replaces each point in an array, the average of its four 
nearest neighbors:

A[i, j] = (A[i-1, j] + A[i, j-1] + A[i+1, j] + A[i, j+1]) / 4;

This computation requires careful coordination to ensure 
that an array location is read by its neighbors before 
being replaced by its average. If space is no concern, 
then the averages can be computed into a new array. In 
general, other more structured computation strategies, 
such as traversing the array in a diagonal wavefront, will 
produce the same result, with better cache locality and 
lower memory consumption.

Regular parallel programs may require synchronization 
or carefully orchestrated execution strategies to produce 
the correct results, but unlike general parallelism, the 
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code behind the operations can be analyzed to determine 
how to execute them concurrently and what data they 
share. This advantage is sometimes hypothetical, since 
program analysis is an imprecise discipline, and suffi-
ciently complex programs are impossible for compilers to 
understand and restructure.

At the other end of the granularity axis, computa-
tions on a Web site are typically independent except for 
accesses to a common database. The computations run 
in parallel without a significant amount of coordination 
beyond the database transactions. This ensures that con-
current access to the same data is consistently resolved.

UNSTRUCTURED PARALLELISM 
The most general, and least disciplined, form of parallel-
ism is when the concurrent computations differ, so that 
their data accesses are not predictable and need to be 
coordinated through explicit synchronization. This is the 
form of parallelism most common in programs written 
using threads and explicit synchronization, in which 
each thread has a distinct role in the program. In general, 
it is difficult to say anything specific about this form of 
parallelism, except that conflicting data accesses in two 
threads need explicit synchronization; otherwise, the 
program will be nondeterministic.

THE PROBLEM OF SHARED STATE, AND  
WHY LOCKS AREN’T THE ANSWER
Another challenging aspect of unstructured parallelism is 
sharing unstructured state. A client application typically 
manipulates shared memory organized as unpredictably 
interconnected graphs of objects.

When two tasks try to access the same object, and one 
could modify its state, if we do nothing to coordinate 
the tasks, we have a data race. Races are bad, because the 
concurrent tasks can read and write inconsistent or cor-
rupted values.

There are a rich variety of synchronization devices 
that can prevent races. The simplest of these is a lock. 
Each task that wants to access a piece of shared data must 

acquire the lock for that data, perform its computation, 
and then release the lock so other operations on the data 
can proceed. Unfortunately, although locks work, they 
pose serious problems for modern software development.

A fundamental problem with locks is that they are 
not composable. You can’t take two correct lock-based 
pieces of code, combine them, and know that the result is 
still correct. Modern software development relies on the 
ability to compose libraries into larger programs, and so it 
is a serious difficulty that we cannot build on lock-based 
components without examining their implementations.

The composability issue arises primarily from the 
possibility of deadlock. In its simplest form, deadlock 
happens when two locks might be acquired by two tasks 
in opposite order: task T1 takes lock L1, task T2 takes lock 
L2, and then T1 tries to take L2 while T2 tries to take L1. 
Both block forever. Because this can happen any time 
two locks can be taken in opposite order, calling into 
code you don’t control while holding a lock is a recipe for 
deadlock.

That is exactly what extensible frameworks do, how-
ever, as they call virtual functions while holding a lock. 
Today’s best-of-breed commercial application frameworks 
all do this, including the .NET Frameworks and the Java 
standard libraries. We have gotten away with it because 
developers aren’t yet writing lots of heavily concur-
rent programs that do frequent locking. Many complex 
models attempt to deal with the deadlock problem—with 
backoff-and-retry protocols, for example—but they 
require strict discipline by programmers, and some intro-
duce their own problems (e.g., livelock).

Techniques for avoiding deadlock by guarantee-
ing locks will always be acquired in a safe order do not 
compose, either. For example, lock leveling and lock 
hierarchies prevent programs from acquiring locks in con-
flicting order by requiring that all locks at a given level be 
acquired at once in a predetermined order, and that while 
holding locks at one level, you can acquire additional 
locks only at higher levels. Such techniques work inside 
a module or framework maintained by a team (although 
they’re underused in practice), but they assume control 
of an entire code base. That severely restricts their use in 
extensible frameworks, add-in systems, and other situa-
tions that bring together code written by different parties. 

A more basic problem with locks is that they rely on 
programmers to strictly follow conventions. The rela-
tionship between a lock and the data that it protects is 
implicit, and it is preserved only through programmer 
discipline. A programmer must always remember to take 
the right lock at the right point before touching shared 
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data. Conventions governing locks in a program are 
sometimes written down, but they’re almost never stated 
precisely enough for a tool to check them.

Locks have other more subtle problems. Locking is 
a global program property, which is difficult to localize 
to a single procedure, class, or framework. All code that 
accesses a piece of shared state must know and obey the 
locking convention, regardless of who wrote the code or 
where it resides.

Attempts to make synchronization a local property 
do not work all the time. Consider a popular solution 
such as Java’s synchronized methods. Each of an object’s 
methods can take a lock on the object, so no two threads 
can directly manipulate the object’s state simultaneously. 
As long as an object’s state is accessed only by its meth-
ods and programmers remember to add the synchronized 
declaration, this approach works.

There are at least three major problems with synchro-
nized methods. First, they are not appropriate for types 
whose methods call virtual functions on other objects 
(e.g., Java’s Vector and .NET’s SyncHashTable), because 
calling into third-party code while holding a lock opens 
the possibility of deadlock. Second, synchronized methods 
can perform too much locking, by acquiring and releas-
ing locks on all object instances, even those never shared 
across threads (typically the majority). Third, synchro-
nized methods can also perform too little locking, by 
not preserving atomicity when a program calls multiple 
methods on an object or on different objects. As a simple 
example of the latter, consider a banking transfer:

account1.Credit(amount); account2.Debit(amount)

Per-object locking protects each call, but does not prevent 
another thread from seeing the inconsistent state of the 
two accounts between the calls. Operations of this type, 
whose atomicity does not correspond to a method call 
boundary, require additional, explicit synchronization.

LOCK ALTERNATIVES
For completeness, we note two major alternatives to 
locks. The first is lock-free programming. By relying on a 
deep knowledge of a processor’s memory model, it is pos-
sible to create data structures that can be shared without 
explicit locking. Lock-free programming is difficult and 
fragile; inventing a new lock-free data-structure imple-
mentation is still often a publishable result.

The second alternative is transactional memory, which 
brings the central idea of transactions from databases 
into programming languages. Programmers write their 

programs as a series of explicitly atomic blocks, which 
appear to execute indivisibly, so concurrently execut-
ing operations see the shared state strictly before or after 
an atomic action executes. Although many people view 
transactional memory as a promising direction, it is still a 
subject of active research.

WHAT WE NEED IN PROGRAMMING LANGUAGES
We need higher-level language abstractions, including 
evolutionary extensions to current imperative languages, 
so that existing applications can incrementally become 
concurrent. The programming model must make concur-
rency easy to understand and reason about, not only dur-
ing initial development but also during maintenance.

EXPLICIT, IMPLICIT, AND AUTOMATIC PARALLELIZATION 
Explicit programming models provide abstractions that 
require programmers to state exactly where concurrency 
can occur. The major advantage of expressing concur-
rency explicitly is that it allows programmers to take full 
advantage of their application domain knowledge and 
express the full potential concurrency in the application. 
It has drawbacks, however. It requires new higher-level 
programming abstractions and a higher level of program-
mer proficiency in the presence of shared data.

Implicit programming models hide concurrency 
inside libraries or behind APIs, so that a caller retains a 
sequential worldview while the library performs the work 
in parallel. This approach lets naïve programmers safely 
use concurrency. Its main drawback is that some kinds of 
concurrency-related performance gains can’t be realized 
this way. Also, it is difficult to design interfaces that do 
not expose the concurrency in any circumstance—for 
example, when a program applies the operation to several 
instances of the same data.

Another widely studied approach is automatic paral-
lelization, where a compiler attempts to find parallel-
ism, typically in programs written in a conventional 
language such as Fortran. As appealing as it may seem, 
this approach has not worked well in practice. Accurate 
program analysis is necessary to understand a program’s 
potential behavior. This analysis is challenging for simple 
languages such as Fortran, and far more difficult for 
languages, such as C, that manipulate pointer-based data. 
Moreover, sequential programs often use sequential algo-
rithms and contain little concurrency.

IMPERATIVE AND FUNCTIONAL LANGUAGES. 
Popular commercial programming languages (e.g., Pascal, 
C, C++, Java, C#) are imperative languages in which a 
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programmer specifies step-by-step changes to variables 
and data structures. Fine-grained control constructs (e.g., 
for loops), low-level data manipulations, and shared 
mutable object instances make programs in these lan-
guages difficult to analyze and automatically parallelize.

The common belief is that functional languages, such 
as Scheme, ML, or Haskell, could eliminate this difficulty 
because they are naturally suited to concurrency. Pro-
grams written in these languages manipulate immutable 
object instances, which pose no concurrency hazards. 
Moreover, without side effects, programs seem to have 
fewer constraints on execution order.

In practice, however, functional languages are not 
necessarily conducive to concurrency. The parallelism 
exposed in functional programs is typically at the level 
of procedure calls, which is impractically fine-grained for 
conventional parallel processors. Moreover, most func-
tional languages allow some side effects to mutable state, 
and code that uses these features is difficult to parallelize 
automatically. 

These languages reintroduce mutable state for reasons 
of expressibility and efficiency. In a purely functional lan-
guage, aggregate data structures, such as arrays or trees, 
are updated by producing a copy containing a modified 
value. This technique is semantically attractive but can be 
terrible for performance (linear algorithms easily become 
quadratic). In addition, functional updates do nothing to 
discourage the writing of a strictly sequential algorithm, 
in which each operation waits until the previous opera-
tion updates the program’s state.

The real contribution of functional languages to 
concurrency comes in the higher-level programming 
style commonly employed in these languages, in which 
operations such as map or map-reduce apply computa-
tions to all elements of an aggregate data structure. These 
higher-level operations are rich sources of concurrency. 
This style of programming, fortunately, is not inherently 
tied to functional languages, but is valuable in imperative 
programs. 

For example, Google Fellows Jeffrey Dean and Sanjay 

Ghemawat describe how Google uses Map-Reduce to 
express large-scale distributed computations.3 Imperative 
languages can judiciously add functional style extensions 
and thereby benefit from those features. This is important 
because the industry can’t just start over. To preserve the 
huge investment in the world’s current software, it is 
essential to incrementally add support for concurrency, 
while preserving software developers’ expertise and train-
ing in imperative languages. 

BETTER ABSTRACTIONS 
Most of today’s languages offer explicit programming at 
the level of threads and locks. These abstractions are low-
level and difficult to reason about systematically. Because 
these constructs are a poor basis for building abstractions, 
they encourage multithreaded programming with its 
problems of arbitrary blocking and reentrancy. 

Higher-level abstractions allow programmers to 
express tasks with inherent concurrency, which a runtime 
system can then combine and schedule to fit the hard-
ware on the actual machine. This will enable applications 
that perform better on newer hardware. In addition, for 
mainstream development, programmers will value the 
illusion of sequential execution within a task.

Two basic examples of higher-level abstractions are 
asynchronous calls and futures. An asynchronous call is a 
function or method call that is nonblocking. The caller 
continues executing and, conceptually, a message is sent 
to a task, or fork, to execute operation independently. 
A future is a mechanism for returning a result from an 
asynchronous call; it is a placeholder for the value that 
has not yet materialized. 

Another example of a higher-level abstraction is an 
active object, which conceptually runs on its own thread 
so that creating 1,000 such objects conceptually cre-
ates 1,000 potential threads of execution. An active 
object behaves as a monitor, in that only one method 
of the object executes at a given time, but it requires no 
traditional locking. Rather, method calls from outside 
an active object are asynchronous messages, marshaled, 
queued, and pumped by the object. Active objects have 
many designs, from specialized actor languages to COM 
single-threaded apartments callable from traditional C 
code, and many design variables. 

Other higher-level abstractions are needed, such as 
protocols to describe and check asynchronous message 
exchange. Together they should bring together a consis-
tent programming model that can express typical applica-
tion concurrency requirements across all of the major 
granularity levels.
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WHAT WE NEED IN TOOLS
Parallel programming, because of its unfamiliarity and 
intrinsic difficulty, is going to require better programming 
tools to systematically find defects, help debug programs, 
find performance bottlenecks, and aid in testing. Without 
these tools, concurrency will become an impediment that 
reduces developer and tester productivity and makes con-
current software more expensive and of lower quality.

Concurrency introduces new types of programming 
errors, beyond those all too familiar in sequential code. 
Data races (resulting from inadequate synchronization 
and deadlocks) and livelocks (resulting from improper 
synchronization) are difficult defects to find and under-
stand, since their behavior is often nondeterministic and 
difficult to reproduce. Conventional methods of debug-
ging, such as reexecuting a program with a breakpoint set 
earlier in its execution, do not work well for concurrent 
programs whose execution paths and behaviors may vary 
from one execution to the next.

Systematic defect detection tools are extremely valu-
able in this world. These tools use static program analysis 
to systematically explore all possible executions of a 
program; thus, they can catch errors that are impossible 
to reproduce. Although similar techniques, such as model 
checking, have been used with great success for finding 
defects in hardware, which is inherently concurrent, 
software is more difficult. The state space of a typical 
program is far larger than that of most hardware, so tech-
niques that systematically explore an artifact’s states have 
much more work to do. In both cases, modularity and 
abstraction are the keys to making the analysis tractable. 
In hardware model testing, if you can break off the ALU 
(arithmetic logic unit) and analyze it independently of 
the register file, your task becomes much more tractable. 

That brings us to a second reason why software is more 
difficulty to analyze: it is far harder to carve off pieces of 
a program, analyze them in isolation, and then combine 
the results to see how they work together. Shared state, 
unspecified interfaces, and undocumented interactions 
make this task much more challenging for software.

Defect detection tools for concurrent software 
comprise an active area of research. One promising 
technique from Microsoft Research called KISS (Keep it 
Strictly Sequential)4 transforms a threaded program into 
a sequential program whose execution behavior includes 
all possible interleaves of the original threads that involve 
no more than two context switches. The transformed 
program can then be analyzed by the large number of 
existing sequential tools, which then become concurrent 
defect detection tools for this bounded model.

Even with advances such as these, programmers are 
still going to need good debuggers that let them under-
stand the complex and difficult-to-reproduce interac-
tions in their parallel programs. There are two general 
techniques for collecting this information. The first is 
better logging facilities that track which messages were 
sent to which process or which thread accessed which 
object, so that a developer can look back and understand 
a program’s partially ordered execution. Developers 
will also want the ability to follow causality trails across 
threads (e.g., which messages to one active object, when 
executed, led to which other messages to other active 
objects?), replay and reorder messages in queues, step 
through asynchronous call patterns including callbacks, 
and otherwise inspect the concurrent execution of their 
code. The second approach is reverse execution, which 
permits a programmer to back up in a program’s execu-
tion history and reexecute some code. Replay debugging 
is an old idea, but its cost and complexity have been 

barriers to adoption. Recently, virtual machine monitors 
have reduced both factors.5 In a concurrent world, this 
technique will likely become a necessity.

Performance debugging and tuning will require new 
tools in a concurrent world as well. Concurrency intro-
duces new performance bottlenecks, such as lock con-
tention, cache coherence overheads, and lock convoys, 
which are often difficult to identify with simple profil-
ers. New tools that are more aware of the underlying 
computer architecture and the concurrent structure of a 
program will be better able to identify these problems.

Testing, too, must change. Concurrent programs, 
because of their nondeterministic behaviors, are more 
difficult to test. Simple code coverage metrics, which 
track whether a statement or branch has executed, need 
to be extended to take into account the other code that 
is executing concurrently, or else testing will provide 
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an unrealistically optimistic picture of how completely 
a program has been exercised. Moreover, simple stress 
tests will need to be augmented by more systematic 
techniques that use model-checking-like techniques to 
explore systems’ state spaces. For example, Verisoft has 
been very successful in using these techniques to find 
errors in concurrent telephone switching software.6 
Today, many concurrent applications use length of stress 
testing to gain confidence that the application is unlikely 
to contain serious races. In the future, that will increas-
ingly be insufficient, and software developers will need to 
be able to prove their product’s quality through rigorous 
deterministic testing instead of relying on a probabilistic 
confidence based on stress tests.

PARALLELISM IS KEY
The concurrency revolution is primarily a software revo-
lution. The difficult problem is not building multicore 
hardware, but programming it in a way that lets main-
stream applications benefit from the continued exponen-
tial growth in CPU performance.

The software industry needs to get back into the state 
where existing applications run faster on new hardware. 
To do that, we must begin writing concurrent applica-
tions containing at least dozens, and preferably hundreds, 
of separable tasks (not all of which need be active at a 
given point).

Concurrency also opens the possibility of new, richer 
computer interfaces and far more robust and functional 
software. This requires a new burst of imagination to find 
and exploit new uses for the exponentially increasing 
potential of new processors.

To enable such applications, programming language 
designers, system builders, and programming tool 
creators need to start thinking seriously about parallel-
ism and find techniques better than the low-level tools 
of threads and explicit synchronization that are today’s 
basic building blocks of parallel programs. We need 
higher-level parallel constructs that more clearly express a 
programmer’s intent, so that the parallel architecture of a 

program is more visible, easily understood, and verifiable 
by tools. Q
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