
36 September 2005 QUEUE rants: feedback@acmqueue.com

EXTREME

Chip multiprocessors

have introduced a

new dimension in

scaling for application

developers, operating

system designers, and

deployment specialists.

MultiprocessorsFO
CU

S

 QUEUE September 2005 37 more queue: www.acmqueue.com

The advent of SMP (symmetric multiprocessing) added
a new degree of scalability to computer systems.
Rather than deriving additional performance from an
incrementally faster microprocessor, an SMP system
leverages multiple processors to obtain large gains
in total system performance. Parallelism in software
allows multiple jobs to execute concurrently on the
system, increasing system throughput accordingly.
Given sufficient software parallelism, these systems
have proved to scale to several hundred processors.

More recently, a similar phenomenon is occurring
at the chip level. Rather than pursue diminishing
returns by increasing individual processor perfor-
mance, manufacturers are producing chips with multi-
ple processor cores on a single die. (See “The Future of
Microprocessors,” by Kunle Olukotun and Lance Ham-
mond, in this issue.) For example, the AMD Opteron1
processor now uses two entire processor cores per die,
providing almost double the performance of a single
core chip. The Sun Niagara2 processor, shown in figure

EXTREME

RICHARD MCDOUGALL, SUN MICROSYSTEMS

Software Scaling

38 September 2005 QUEUE rants: feedback@acmqueue.com

1, uses eight cores per die, where each core is further mul-
tiplexed with four hardware threads each.

These new CMPs (chip multiprocessors) are bringing
what was once a large multiprocessor system down to
the chip level. A low-end four-chip dual-core Opteron
machine presents itself to software as an eight-proces-
sor system, and in the case of the Sun Niagara processor
with eight cores and four threads per core, a single chip
presents itself to software as a 32-processor system. As a
result, the ability of system and application software to
exploit multiple processors or threads simultaneously is

becoming more important than ever. As CMP hardware
progresses, software is required to scale accordingly to
fully exploit the parallelism of the chip.

Thus, bringing this degree of parallelism down to the
chip level represents a signifi cant change to the way we
think about scaling. Since the cost of a CMP system is
close to that of recent low-end uniprocessor systems, it’s
inevitable that even the cheapest desktops and servers
will be highly threaded. Techniques used to scale applica-
tion and system software on large enterprise-level SMP
systems will now frequently be leveraged to provide scal-
ability even for single-chip systems. We need to consider
the effects of the change in the degree of scaling on the
way we architect applications, on which operating system
we choose, and on the techniques we use to deploy appli-
cations—even at the low end.

CMP: JUST A COST-EFFECTIVE SMP?
A simplistic view of a CMP system is that it appears to
software as an SMP system with the number of processors
equal to the number of threads in the chip, each with
slightly reduced processing capability. Since each hard-
ware thread is sharing the resources of a single processor
core, each thread has some fraction of the core’s overall
performance. Thus, an eight-core chip with 32 hardware

threads running at 1 GHz
may be somewhat crudely
approximated as an SMP
system with thirty-two
250-MHz processors.
The effect on software is
often a subtle trade-off
in per-thread latency for
a signifi cant increase of
throughput. For a through-
put-oriented workload with
many concurrent requests
(such as a Web server),
the marginal increase in
response time is virtually
negligible, but the increase
in system throughput is an
order of magnitude over a
non-CMP processor of the
same clock speed.

There are, however,
more subtle differences
between a CMP system and
an SMP system. If threads
or cores within a CMP pro-

EXTREME
Software Scaling

A Chip Multiprocessor

instruction
cache

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

data
cache

MMU

core 1

instruction
cache

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

data
cache

MMU

core 8

level 2 cache

memory

FIG 1FIG 1

MultiprocessorsFO
CU

S

 QUEUE September 2005 39 more queue: www.acmqueue.com

cessor share important resources, then some threads may
impact the performance of other threads. For example,
when multiple threads share a single core and therefore
share fi rst-level memory caches, the performance of a
given thread may vary depending on what the other
threads, of the same core, are doing with the fi rst thread’s
data in the cache. Yet, in another similar case, a thread

may actually gain if the other threads are constructively
sharing the cache, since useful data may be brought into
the cache by threads other than the fi rst. This is covered
in more detail later as we explore some of the potential
operating system optimizations.

SCALING THE SOFTWARE
The performance of system software ideally scales pro-
portionally with the number of processors in the system.
There are, however, factors that limit the speedup.

Amdahl’s law3 defi nes scalability as the speedup of
a parallel algorithm, effectively limited by the number
of operations that must be performed sequentially (i.e.,
its serial fraction), as shown in fi gure 2. If 10 percent of
a parallel program involves serial code, the maximum
speedup that can be attained is three, using four proces-
sors (75 percent of linear), reducing to only 4.75 when
the processor count increases to eight (only 59 percent
of linear). Amdahl’s law tells us that the serial fraction
places a severe constraint on the speedup as the number
of processors increase.

In addition, software typically incurs overhead as a
result of communication and distribution of work to
multiple processors. This results in a scaling curve where
the performance peaks and then begins to degrade (see
fi gure 3).

Since most operating systems and applications contain
a certain amount of sequential code, a possible conclu-
sion of Amdahl’s law is that it is not cost effective to
build systems with large numbers of processors because
suffi cient speedup will never be produced. Over the past
decade, however, the focus has been on reducing the
serial fraction within hardware architectures, operating
systems, middleware, and application software. Today, it
is possible to scale system software and applications on
the order of 100 processors on an SMP system. Figure 4
shows the results for a series of scaling benchmarks that
were performed using database workloads on a large SMP
confi guration. These application benchmarks were per-
formed on a single-system image by measuring through-
put as the number of processors was increased.

INTRA- OR INTER-MACHINE SCALE?
Software scalability for these large SMP machines has
historically been obtained through rigorous focus on
intra-machine scalability within one large instance of
the application within a single operating system. A good
example is a one-tier enterprise application such as
SAP. The original version of SAP used a single and large
monolithic application server. The application instance

Speedups
(0%, 2%, 5% and 10% Sequential Portions)

8.0

6.0

4.0

2.0

0

0%

2%

5%

10%

1 2 3 4 5 6 7 8

re
la

ti
ve

 s
pe

ed
up

number of processors

Speedup Curve With Overheads

2.5

2.0

1.5

1.0

0.5

0

5%

20%

10%
15%

1 2 3 4 5 6 7 8

re
la

ti
ve

 s
pe

ed
up

number of processors

FIG 3FIG 3

FIG 2

40 September 2005 QUEUE rants: feedback@acmqueue.com

obtains its parallelism from the many concurrent requests
from users. Providing there are no major serialization
points between the users, the application will naturally
scale. The focus on scaling these applications has been to
remove these serialization points within the applications.

More recently, because of the economics of low-end
systems, the focus has been on leveraging inter-machine
scaling, using low-cost commodity one- to two-processor
servers. Some applications can be made to scale without
requiring large, expensive SMP systems by running multi-
ple instances in parallel on separate one- to two-processor
systems, resulting in good
overall throughput. Appli-
cations can be designed to
scale this way by moving
all shared state to a shared
back-end service, like a
database. Many one- to
two-processor systems
are confi gured as mid-tier
application servers, com-
municating to an intra-
machine scaled database
system. The shift in focus
to one- to two-processor
hardware has removed
much of the pressure to
design intra-machine scal-
ability into the software.

The compelling features
of CMP—low power,
extreme density, and high
throughput—match this
space well, mandating
a revised focus on intra-
machine scalability.

IMPACT OF CMP ON APPLICATION DEVELOPERS
The most signifi cant impact for application developers is
the requirement to scale. The minimum scaling require-
ment has been raised from 1-4 processors to 32 today, and
will likely increase again in the near future.

BUILDING SCALABLE APPLICATIONS
Engineering scalable code is challenging, but the perfor-
mance wins are huge. The data in the scaling curves for
Oracle and DB2 in fi gure 4 show the rewards, from a great
deal of performance tuning to optimization for scaling.
According to Amdahl’s law, scaling software requires
minimization of the serial fraction of the workload. In
many commercial systems, natural parallelism comes
from the many concurrent users of the system.

The simple fi rst-order scaling bottlenecks (those with
a large serial fraction) typically come from contention for
shared resources, such as:
• Networks or interconnects. Bandwidth limitations on

interconnects between portions of the system—for
example, an ingress network on the Web servers, tier-1
and -2 networks for SQL traffi c, or a SAN (storage area
network).

• CPU/Memory. Queuing for CPU or waiting for page
faults as a result of resource starvation.

Scaling of Throughput-Oriented Workloads on SMP Hardware

pe
rfe

ct
 sc

ali
ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

0 16 32 48 64
0

16

32

48

64

sc
al

in
g

number of CPUs

FIG 4FIG 4

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 41 more queue: www.acmqueue.com

• I/O throughput. Insufficient capacity for disk I/O opera-
tions or bandwidth.

The more interesting problems result from intrinsic
application design. These problems manifest from serial
operations within the application or the operating envi-
ronment. They are often much harder to identify without
good observation tools, because rather than showing
up as an easy-to-detect overloaded resource (such as out
of CPU), they often exhibit growing amounts of idle
resource as load is increased.

Here’s a common example. We were recently asked to
help with a scaling problem on a large online e-commerce
system. The application consisted of thousands of users
performing payment transactions from a Web applica-
tion. As load increased, the latency became unacceptable.
The application was running on a large SMP system and
database, both of which were known to scale well. There
was no clear indicator of where in the system the problem
occurred. As load was increased, the system CPU resources
became more idle. It turned out that there was a single
table at the center of all the updates, and the locking
strategy for the table became the significant serial fraction
of the workload. User transactions were simply waiting
for updates to the table. The solution was to break up the
table so that concurrent inserts could occur, thus reduc-
ing the serial fraction and increasing scalability.

For CMP, we need to pay attention to what might limit
scaling within one application instance, since we now
need to scale in the order of tens of threads, increasing to
the order of 100 in the near future.

WRITING SCALABLE LOW-LEVEL CODE
Many middleware applications (such as databases, appli-
cation servers, or transaction systems) require special
attention to scale. Here are a few of the common tech-
niques that may serve as a general guideline.

Scalable algorithms. Many algorithms become less effi-
cient as the size of the problem set increases. For example,
an algorithm that searches for an object using a linear list
will increase the amount of CPU required as the size of
the list increases, potentially at a super-linear rate. Select-
ing good algorithms that optimize for the common case
is of key importance.

Locking. Locking strategies have significant impact
on scalability. As concurrency increases, the num-
ber of threads attempting to lock an object or region
increases, resulting in compounding contention as the
lock becomes “hotter.” In modern systems, an opti-
mal approach is to provide fine-grained locking using
a lock per object where possible. There are also several

approaches to making the reader side of code lock-free at
the expense of some memory waste or increased writer-
side cost.

Cache line sharing. Multiprocessor and CMP systems
use hardware coherency algorithms to keep data consis-
tent between different pipelines. This can have a signifi-
cant effect on scaling. For example, a latency penalty may
result if one processor updates a memory object within
its cache, which is also accessed from another processor.
The cache location will be invalidated because of the
cache coherency hardware protocol, which ensures only
one version of the data exists. In a CMP system, multiple
threads typically access a single first-level cache; thus,
colocating data that will be accessed within a single core
may be appropriate.

Pools of worker threads. A good approach for con-
currency is to use a pool of worker threads; a general-
purpose, multithreaded engine can be used to process
an aggregate set of work events. Using this model, an
application gives discrete units of work to the engine and
lets the engine process them in parallel. The worker pool
provides a flexible mechanism to balance the work events
across multiple processors or hardware threads. The
operating system can automatically tune the concurrency
of the application to meet the topology of the underlying
hardware architecture.

Memory allocators. Memory allocators pose a signifi-
cant problem to scaling. Almost every code needs to allo-
cate and free data structures, and typically does so via a
central system-provided memory allocator. Unfortunately,
very few memory allocators scale well. The few that do
include the open source Hoard, Solaris 10’s libumem slab
allocator, and MicroQuill’s SmartHeap. It’s worth paying
attention to more than one dimension of scalability: dif-
ferent allocators have different properties in light of the
nature of allocation/deallocation requests.

CONDUCT SCALABILITY EXPERIMENTS EARLY AND OFTEN
Time has shown that the most efficient way of driv-
ing out scaling issues from an application is to perform
scaling studies. Given the infinite space in which opti-
mizations can be made, it is important to follow a meth-
odology to prioritize the most important issues.

Modeling techniques can be used to mathematically
predict response times and potential scaling bottlenecks
in complex systems. They are often used for predicting
the performance of hardware, to assist with design trade-
off analysis. Modeling software, however, requires inti-
mate knowledge of the software algorithms, code paths,
and system service latencies. The time taken to construct

42 September 2005 QUEUE rants: feedback@acmqueue.com

a model and validate all assumptions is often at odds with
running scaling tests.

A well-designed set of scaling experiments is key to
understanding the performance characteristics of an
application, and with proper observation instrumenta-
tion, it is easy to pinpoint key issues. Scalability predic-
tion and analysis should be done as early as possible in
the development cycle. It’s often much harder to retrofit
scalability improvements to an existing architecture.
Consider scalability as part of the application architecture
and design.

Key items to include in scalability experiments are:
• Throughput versus number of threads/processors. Does

the throughput scale close to linearly as the amount of
resource applied increases?

• Throughput versus resource consumed (i.e., CPU,
network I/O, and disk I/O) per transaction. Does the
amount of resource consumed per unit of work increase
as scale increases?

• Latency versus throughput. Does the latency of a trans-
action increase as the throughput of a system increases?
A system that provides linear throughput scalability
might not be useful in the real world if the transaction
response times are too long.

• Statistics. Measure code path length in both number of
instructions and cycles.

OBSERVATION TOOLS ARE THE PRIMARY MEANS
TO SCALABLE SOFTWARE
Effective tools are the most significant factor in improv-
ing application scalability. Being able to quickly identify
a root cause of a scaling issue is paramount. The objective
of looking for scaling issues is to easily pinpoint the most
significant sources of serialization.

The tools should help identify what type of issue is
causing the serialization—the two classic cases being star-

vation resulting from escalating resource requirements as
load increases, and increasing idle time as load increases.
Ideally, the tools should help identify the source of the
scaling issue rather than merely pointing to the object of
contention. This helps with identifying not only what
the contention point is, but also perhaps some offending
code that may be overutilizing a resource. Often, once the
source is identified, many obvious optimizations become
apparent.

Consider tools that can do the following:
• Locate key sources of wait time. What are the con-

tended resources, which one is causing the resource uti-
lization, and how much effect is the contention having
on overall performance?

• Identify hot synchronization locks. How much wall
clock and CPU time is serialized in locking objects, and
which code is responsible?

• Identify nonscalable algorithms. Which functions or
classes become more expensive as the scale of the appli-
cation increases?

• Make it clear where the problem lies. This is done
either in the application code, which you can affect,
or by pointing to a contention point in a vendor-sup-
plied middleware or operating system. Even though
the contention point may lie in a vendor code, it may
result from how that code is being called, which can be
affected by optimizing the higher-level code.

CMT AND SOFTWARE LICENSING
Another impact of the hardware architecture’s scal-
ing characteristics is on software licensing. Applica-
tion developers often use the number of processors in
the system to determine the price of the software. The
number of processors has been a convenient measure for
software licensing, primarily because of the close correla-
tion between the costs of the hardware platform and the
number of processors. By using a license fee indexed by
the number of processors, the software vendor can charge
a roughly proportional fee for software.

This is, however, based on old assumptions that are
no longer true. First of all, an operating system on a CMT
platform reports one virtual processor for every thread in
the chip, resulting in a very expensive software license for
a low-end system. Software vendors have been scrambling
to adjust for the latest two-core CMT systems, some opt-
ing for one license fee per core, and others for each physi-
cal chip. Licensing by core unfairly increases software
licenses per dollar unit of hardware.

In the short term, operating system vendors are
providing enhancements to report the number of cores

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 43 more queue: www.acmqueue.com

and physical processors in the system, but there is an
urgent need for a more appropriate (and fair) solution.
It is likely that a throughput-based license fee that uses
standard benchmarks will be pursued. This would allow
license fees to be charged in accordance with the actual
processing power of the platform. Such a scheme would
allow software licenses to scale when more advanced
virtualization schemes, which divide up processors into
subprocessor portions, are used (such as priority-based
resource partitioning). These schemes are becoming more
commonplace as utility computing and server consolida-
tion become more popular. The opportunity for operating
system vendors is to choose a uniform metric that can
be measured and reported, based on the actual use by an
application.

IMPACT OF CMP FOR OPERATING SYSTEMS
The challenge for the operating system is twofold: provid-
ing scalable system services to the applications it hosts,
and providing a scalable programming environment that
facilitates easy development of parallel programs.

CMP ENHANCEMENTS FOR OPERATING SYSTEMS
An SMP-capable operating system kernel works quite well
on CMP hardware. Since each core or hardware thread in
a chip has an entire set of registers, they appear to soft-
ware as individual CPUs. An unchanged operating system
will simply implement one logical processor for every
hardware thread in the chip. Software threads will be

scheduled onto each hardware thread just as in an SMP
system, with equal weighting according to the operating
system kernel’s scheduling policy (see fi gure 5).

Basic changes to optimize for CMT processors will
include elimination of any busy wait loops. For example,
the idle loop is typically implemented as a busy spin that
checks a run queue looking for more work to do. When
multiple hardware threads share a single core, the idle
loop running on one thread will have a detrimental effect
on other threads sharing the core’s pipeline. In this exam-
ple, leveraging the hardware’s ability to park a thread
when there is no work to do would be more effective.

Further operating system enhancements will likely be
pursued to optimize for the subtle differences of CMPs.
For example, with knowledge of the processor architec-
ture and some information about the behavior of the
software, the scheduler may be able to optimize the place-
ment of software threads onto specifi c hardware threads.
In the case of a CMP architecture with multiple hardware
threads sharing a core, fi rst-level cache, and TLB (transla-
tion look-aside buffer), there may be a benefi t if software
threads with similar memory access patterns (construc-
tive) are colocated on the same core, and those with
destructive patterns are separated onto different cores.

OPERATING SYSTEM SCALING
The challenge with scaling operating system services has
historically been the shared state between instances of the
services. For example, consider a global process table that

Software Threads Scheduling on CMP Cores/Threads

threads
C1 C2 C3 C4 C5 C6 C7 C8

application

operating
system OS scheduler

cores

Xbar

level 2 cache

application threads

FIG 5FIG 5

44 September 2005 QUEUE rants: feedback@acmqueue.com

needs to be accessed and updated by any program want-
ing to start a new process. In a multiprocessor system,
synchronization techniques must be used to mitigate race
conditions when two or more threads attempt to update
the process table at the same time.

The common techniques require serialization around
either the code that accesses these structures or the data
structures themselves. Early attempts to port Unix to
SMP hardware were crude—they were typically retrofits
of existing operating system codes with simple, coarse-
grained serialization. For example, the first SMP Unix
systems used a slightly modified implementation with a
single global lock around the operating system kernel to
serialize all requests to its data structures. Early versions
of SunOS (1.x), Linux (2.2), and FreeBSD (4.x) kernels
used this approach. Although easy to implement, this
approach helps scalability only for applications that sel-
dom use operating system services. Applications that were
entirely compute-intensive showed good scalability, but
those that used a significant amount of operating system
services saw serialization yielding little or no scalability
beyond one processor.

In contrast, successful operating system scaling is
achieved by minimizing contention, restricting serializa-
tion to only fine-grained portions of data structures. In
this way, the operating system can execute code within
the same region concurrently on multiple processors,
serializing only momentarily while accessing shared data
structures. This approach does, however, require substan-
tial architectural change to the operating system and in
some cases a ground-up redesign focused on scalability.

A well-designed operating system allows high levels
of concurrency through its operating system services. In
particular, applications invoking system services through
libraries, memory allocators, and other system services
must be able to execute in parallel even if they access

shared facilities. For example, multiple programs should
be able to allocate memory concurrently without serial-
izing. Other areas that are critical to scalability include
parallel access to shared hardware (e.g., I/O) and the
networking subsystem.

SCALING ENHANCEMENTS IN FREEBSD
FreeBSD has seen a significant amount of scaling effort,
starting with 5.x kernels.4 Architectural changes include
new kernel memory allocators, synchronization routines,
the move to ithreads, and the removal of the global
kernel lock from activities such as process scheduling,
virtual memory, the virtual file system, the UFS (Unix
file system), the networking stack, and several common
forms of inter-process communication. The scaling work
in FreeBSD has successfully improved scaling (estimates
suggest to the order of 12 processors).

SCALING ENHANCEMENTS IN LINUX
Scaling was greatly improved in Linux 2.2 kernels by
breaking up the global kernel lock. It is said to scale on
the order of two to four processors. Linux 2.4 scaling
was improved to eight to 16 by introducing much finer-
grained locking in the scheduler and I/O subsystem. This
improved the scaling of many items, including interrupts
and I/O. Later efforts in Linux kernels focused on scaling
the scheduler for larger numbers of processes and improv-
ing concurrency through the networking subsystem.

SCALING ENHANCEMENTS IN SOLARIS
The Solaris operating system is built around the concept
of concurrency, and serialization is restricted to very small
and critical parts of data structures. The operating system
is designed around the notion that execution contexts
are individual software threads, which are scheduled and
executed in parallel where possible.

Replacing the original Unix memory allocators with
the Slab5 and Vmem6 allocators led to significant scal-
ability gains. These provide consistent in-time allocations
as the object set sizes grow, and they pay special atten-
tion to avoid locking by providing per-processor pools of
memory that allow allocations and deallocations to occur
without having to access global structures.

Scalable I/O is achieved by allowing requesting threads
to execute concurrently even within the same device
driver, and further by processing interrupts from hard-
ware devices as separate threads, allowing scaling of inter-
rupt handling.7

In some cases, there are requirements for high levels
of concurrent access to data structures. For example, per-

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 45 more queue: www.acmqueue.com

formance statistics for I/O devices require updates from
potentially thousands of concurrent operations. To miti-
gate contention around these types of structures, statistics
are kept on a per-processor basis and then aggregated
when required. This allows concurrent access to updates,
requiring serialization only when the statistics are read.

The Solaris networking code was rearchitected to elimi-
nate the majority of the global data structures by intro-
ducing a per-connection vertical perimeter.8 This allows
the TCP/IP implementation to operate in near-lockless
mode within a single connection, requiring locking only
when global events such as routing changes occur.

Integrated observation tools are key to optimizing
scaling issues. Facilities for observing sources of locking
contention on systems with live workloads have been
critical to making improvements in important areas.
More recently, Dtrace, perhaps one of the more revolu-
tionary approaches to performance optimization, allows
dynamic instrumentation of C and Java code.9 It can
quickly pinpoint sources of contention from the top of
the application stack through the operating system.

These types of techniques allow the Solaris kernel to
scale to thousands of threads, up to 1 million I/Os per
second, and several hundred physical processors. Con-
veniently, this scaling work can be leveraged for CMP
systems. Techniques such as those described here, which
are vital for large SMP scaling, are now required even
for entry-level CMP systems. Within the next fi ve years,
expect to see CMP hardware scaling to as many as 512
processor threads per system, pushing the requirements
of operating system scaling past the extreme end of that
realized today.

OPERATING SYSTEM UTILIZATION METRICS
The reporting of processor utilization on systems with
multithreaded cores poses a challenge. In a single-core
chip, throughput often increases proportionally with pro-
cessor utilization. In a multithreaded chip, there is much
greater opportunity for sharing of resources between
hardware threads, and therefore a nonlinear relationship
exists between throughput and the actual utilization of a
processor. As a result, calculation of “headroom” based on
reported processor utilization may no longer be accurate.

For example, a processor core with two threads (such
as an Intel Xeon) presents itself to the operating system as
two separate processors. If a software thread fully uses one
of the threads and the other is completely idle, the pro-
cessor will appear 50 percent busy and be reported as such
by the operating system. Running two of these threads on
the processor may often yield only a 10 percent through-
put increase on Xeon architecture, but since both threads
are utilized, it will report as 100 percent busy. So this
system now reports 50 percent utilization when it’s at 90
percent of its maximum throughput.

This effect will vary depending on how many of the
resources are shared by hardware threads within the
processor, and ultimately will need some redefi nition of
the meaning of system utilization metrics, together with
some new facilities for reporting. The impact on capacity
planning methodology will also need to be considered.

LEVERAGING VIRTUALIZATION FOR PARALLELISM
So far we have examined how to fi nd ways to use the
many hardware threads available with CMTs by scaling
individual applications or operating systems. Another

Different Types of Virtualization

application

Solaris

virtual machine

container

application application

container
application

server

Solaris

application

Solaris

virtual machine

memory backplane memory backplane

server

FIG 6FIG 6

46 September 2005 QUEUE rants: feedback@acmqueue.com

way to use these resources effectively is to run multiple
nonscalable applications or even several unoptimized
operating systems at once, using techniques such as oper-
ating system or server virtualization.

These facilities typically allow multiple instances of an
application to be consolidated onto a single server (see
figure 6).

For example, the Solaris Container facility allows mul-
tiple applications to reside within a single operating sys-
tem instance. In such an environment, you can leverage
the cumulative concurrency as applications are added. By
adding two Web servers, each of which has concurrency
of 16 threads, you can potentially increase the system-
wide concurrency to 32 threads. This side effect presents a
useful mechanism that allows you to deploy applications
with limited scalability in a manner that can exploit the
full concurrency of a CMP system.

Another relevant virtualization technology is the
virtual machine environment, which allows multiple
operating system instances to run on a single hardware
platform. Examples of virtual machine technologies are
VMware and Xen. These environments allow consolida-
tion of applications and operating systems on a single
system, which provides a mechanism to deploy even
nonscalable operating systems on CMP architectures,
albeit with a little more complexity.

CMP REQUIRES A RETHINKING BY DEVELOPERS
The introduction of CMP systems represents a significant
opportunity to scale systems in a new dimension. The
most significant impact of CMP systems is that the degree
of scaling is being increased by an order of magnitude:
what was a low-end one- to two-processor entry-level
system should now be viewed as a 16- to 32-way system,
and soon even midrange systems will be scaling to several
hundred ways.

For application developers, this represents a new or
revised focus on intra-machine scalability within applica-
tions and a rethinking of how software license fees are
calculated. For operating system developers, scalability
to hundreds of ways is going to be a requirement. For
deployment practitioners, CMP represents a new way to
scale applications and will require consideration in the
systems we architect, the way we tune, and the tech-
niques we use for capacity planning. Q

REFERENCES
1. AMD Opteron Processor; http://www.amd.com.
2. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.

Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro 25 (2): 21–29.

3. Amdahl, G. M. 1967. Validity of the single-processor
approach to achieving large-scale computing capabili-
ties. Proceedings of AFIPS Conference: 483-485.

4. The FreeBSD SMP Project; http://www.freebsd.org/
smp/.

5. Bonwick, J. 1994. The Slab allocator: an object-caching
kernel memory allocator. Sun Microsystems.

6. Bonwick, J., and Adams, J. 2001. Magazines and
Vmem: extending the Slab allocator to many CPUs and
arbitrary resources. Sun Microsystems and California
Institute of Technology.

7. Kleiman, S., and Eykholt, J. 1995. Interrupts as threads.
ACM Sigops Operating Systems Review 29 (2): 21-26.

8. Tripathi, S. 2005. Solaris OS network performance. Sun
White Paper (February).

9. Cantrill, B. M., Shapiro, M. W., Leventhal, A.H. 2004.
Dynamic instrumentation of production systems.
Usenix Proceedings.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

RICHARD McDOUGALL, had he lived 100 years ago, would
have had the hood open on the first four-stroke internal
combustion gasoline-powered vehicle, exploring new tech-
niques for making improvements. He would be looking for
simple ways to solve complex problems and helping pioneer-
ing owners understand how the technology worked to get
the most from their new experience. These days, McDougall
uses technology to satisfy his curiosity. He is a Distinguished
Engineer at Sun Microsystems, specializing in operating sys-
tems technology and system performance. McDougall is the
author of Solaris Internals (Prentice Hall, 2000; second edi-
tion, 2005), and Resource Management (Prentice Hall, 1999).
© 2005 ACM 1542-7730/05/0900 $5.00

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

