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The advent of SMP (symmetric multiprocessing) added 
a new degree of scalability to computer systems. 
Rather than deriving additional performance from an 
incrementally faster microprocessor, an SMP system 
leverages multiple processors to obtain large gains 
in total system performance. Parallelism in software 
allows multiple jobs to execute concurrently on the 
system, increasing system throughput accordingly. 
Given sufficient software parallelism, these systems 
have proved to scale to several hundred processors.

More recently, a similar phenomenon is occurring 
at the chip level. Rather than pursue diminishing 
returns by increasing individual processor perfor-
mance, manufacturers are producing chips with multi-
ple processor cores on a single die. (See “The Future of 
Microprocessors,” by Kunle Olukotun and Lance Ham-
mond, in this issue.) For example, the AMD Opteron1 
processor now uses two entire processor cores per die, 
providing almost double the performance of a single 
core chip. The Sun Niagara2 processor, shown in figure 
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1, uses eight cores per die, where each core is further mul-
tiplexed with four hardware threads each.

These new CMPs (chip multiprocessors) are bringing 
what was once a large multiprocessor system down to 
the chip level. A low-end four-chip dual-core Opteron 
machine presents itself to software as an eight-proces-
sor system, and in the case of the Sun Niagara processor 
with eight cores and four threads per core, a single chip 
presents itself to software as a 32-processor system. As a 
result, the ability of system and application software to 
exploit multiple processors or threads simultaneously is 

becoming more important than ever. As CMP hardware 
progresses, software is required to scale accordingly to 
fully exploit the parallelism of the chip.

Thus, bringing this degree of parallelism down to the 
chip level represents a signifi cant change to the way we 
think about scaling. Since the cost of a CMP system is 
close to that of recent low-end uniprocessor systems, it’s 
inevitable that even the cheapest desktops and servers 
will be highly threaded. Techniques used to scale applica-
tion and system software on large enterprise-level SMP 
systems will now frequently be leveraged to provide scal-
ability even for single-chip systems. We need to consider 
the effects of the change in the degree of scaling on the 
way we architect applications, on which operating system 
we choose, and on the techniques we use to deploy appli-
cations—even at the low end.

CMP: JUST A COST-EFFECTIVE SMP?
A simplistic view of a CMP system is that it appears to 
software as an SMP system with the number of processors 
equal to the number of threads in the chip, each with 
slightly reduced processing capability. Since each hard-
ware thread is sharing the resources of a single processor 
core, each thread has some fraction of the core’s overall 
performance. Thus, an eight-core chip with 32 hardware 

threads running at 1 GHz 
may be somewhat crudely 
approximated as an SMP 
system with thirty-two 
250-MHz processors. 
The effect on software is 
often a subtle trade-off 
in per-thread latency for 
a signifi cant increase of 
throughput. For a through-
put-oriented workload with 
many concurrent requests 
(such as a Web server), 
the marginal increase in 
response time is virtually 
negligible, but the increase 
in system throughput is an 
order of magnitude over a 
non-CMP processor of the 
same clock speed.

There are, however, 
more subtle differences 
between a CMP system and 
an SMP system. If threads 
or cores within a CMP pro-
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cessor share important resources, then some threads may 
impact the performance of other threads. For example, 
when multiple threads share a single core and therefore 
share fi rst-level memory caches, the performance of a 
given thread may vary depending on what the other 
threads, of the same core, are doing with the fi rst thread’s 
data in the cache. Yet, in another similar case, a thread 

may actually gain if the other threads are constructively 
sharing the cache, since useful data may be brought into 
the cache by threads other than the fi rst. This is covered 
in more detail later as we explore some of the potential 
operating system optimizations.

SCALING THE SOFTWARE
The performance of system software ideally scales pro-
portionally with the number of processors in the system. 
There are, however, factors that limit the speedup.

Amdahl’s law3 defi nes scalability as the speedup of 
a parallel algorithm, effectively limited by the number 
of operations that must be performed sequentially (i.e., 
its serial fraction), as shown in fi gure 2. If 10 percent of 
a parallel program involves serial code, the maximum 
speedup that can be attained is three, using four proces-
sors (75 percent of linear), reducing to only 4.75 when 
the processor count increases to eight (only 59 percent 
of linear). Amdahl’s law tells us that the serial fraction 
places a severe constraint on the speedup as the number 
of processors increase.

In addition, software typically incurs overhead as a 
result of communication and distribution of work to 
multiple processors. This results in a scaling curve where 
the performance peaks and then begins to degrade (see 
fi gure 3).

Since most operating systems and applications contain 
a certain amount of sequential code, a possible conclu-
sion of Amdahl’s law is that it is not cost effective to 
build systems with large numbers of processors because 
suffi cient speedup will never be produced. Over the past 
decade, however, the focus has been on reducing the 
serial fraction within hardware architectures, operating 
systems, middleware, and application software. Today, it 
is possible to scale system software and applications on 
the order of 100 processors on an SMP system. Figure 4 
shows the results for a series of scaling benchmarks that 
were performed using database workloads on a large SMP 
confi guration. These application benchmarks were per-
formed on a single-system image by measuring through-
put as the number of processors was increased. 

INTRA- OR INTER-MACHINE SCALE?
Software scalability for these large SMP machines has 
historically been obtained through rigorous focus on 
intra-machine scalability within one large instance of 
the application within a single operating system. A good 
example is a one-tier enterprise application such as 
SAP. The original version of SAP used a single and large 
monolithic application server. The application instance 
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obtains its parallelism from the many concurrent requests 
from users. Providing there are no major serialization 
points between the users, the application will naturally 
scale. The focus on scaling these applications has been to 
remove these serialization points within the applications.

More recently, because of the economics of low-end 
systems, the focus has been on leveraging inter-machine 
scaling, using low-cost commodity one- to two-processor 
servers. Some applications can be made to scale without 
requiring large, expensive SMP systems by running multi-
ple instances in parallel on separate one- to two-processor 
systems, resulting in good 
overall throughput. Appli-
cations can be designed to 
scale this way by moving 
all shared state to a shared 
back-end service, like a 
database. Many one- to 
two-processor systems 
are confi gured as mid-tier 
application servers, com-
municating to an intra-
machine scaled database 
system. The shift in focus 
to one- to two-processor 
hardware has removed 
much of the pressure to 
design intra-machine scal-
ability into the software.

The compelling features 
of CMP—low power, 
extreme density, and high 
throughput—match this 
space well, mandating 
a revised focus on intra-
machine scalability.

IMPACT OF CMP ON APPLICATION DEVELOPERS
The most signifi cant impact for application developers is 
the requirement to scale. The minimum scaling require-
ment has been raised from 1-4 processors to 32 today, and 
will likely increase again in the near future.

BUILDING SCALABLE APPLICATIONS
Engineering scalable code is challenging, but the perfor-
mance wins are huge. The data in the scaling curves for 
Oracle and DB2 in fi gure 4 show the rewards, from a great 
deal of performance tuning to optimization for scaling. 
According to Amdahl’s law, scaling software requires 
minimization of the serial fraction of the workload. In 
many commercial systems, natural parallelism comes 
from the many concurrent users of the system. 

The simple fi rst-order scaling bottlenecks (those with 
a large serial fraction) typically come from contention for 
shared resources, such as:
•  Networks or interconnects. Bandwidth limitations on 

interconnects between portions of the system—for 
example, an ingress network on the Web servers, tier-1 
and -2 networks for SQL traffi c, or a SAN (storage area 
network).

•  CPU/Memory. Queuing for CPU or waiting for page 
faults as a result of resource starvation.

Scaling of Throughput-Oriented Workloads on SMP Hardware
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•  I/O throughput. Insufficient capacity for disk I/O opera-
tions or bandwidth.

The more interesting problems result from intrinsic 
application design. These problems manifest from serial 
operations within the application or the operating envi-
ronment. They are often much harder to identify without 
good observation tools, because rather than showing 
up as an easy-to-detect overloaded resource (such as out 
of CPU), they often exhibit growing amounts of idle 
resource as load is increased. 

Here’s a common example. We were recently asked to 
help with a scaling problem on a large online e-commerce 
system. The application consisted of thousands of users 
performing payment transactions from a Web applica-
tion. As load increased, the latency became unacceptable. 
The application was running on a large SMP system and 
database, both of which were known to scale well. There 
was no clear indicator of where in the system the problem 
occurred. As load was increased, the system CPU resources 
became more idle. It turned out that there was a single 
table at the center of all the updates, and the locking 
strategy for the table became the significant serial fraction 
of the workload. User transactions were simply waiting 
for updates to the table. The solution was to break up the 
table so that concurrent inserts could occur, thus reduc-
ing the serial fraction and increasing scalability.

For CMP, we need to pay attention to what might limit 
scaling within one application instance, since we now 
need to scale in the order of tens of threads, increasing to 
the order of 100 in the near future.

WRITING SCALABLE LOW-LEVEL CODE
Many middleware applications (such as databases, appli-
cation servers, or transaction systems) require special 
attention to scale. Here are a few of the common tech-
niques that may serve as a general guideline.

Scalable algorithms. Many algorithms become less effi-
cient as the size of the problem set increases. For example, 
an algorithm that searches for an object using a linear list 
will increase the amount of CPU required as the size of 
the list increases, potentially at a super-linear rate. Select-
ing good algorithms that optimize for the common case 
is of key importance.

Locking. Locking strategies have significant impact 
on scalability. As concurrency increases, the num-
ber of threads attempting to lock an object or region 
increases, resulting in compounding contention as the 
lock becomes “hotter.” In modern systems, an opti-
mal approach is to provide fine-grained locking using 
a lock per object where possible. There are also several 

approaches to making the reader side of code lock-free at 
the expense of some memory waste or increased writer-
side cost.

Cache line sharing. Multiprocessor and CMP systems 
use hardware coherency algorithms to keep data consis-
tent between different pipelines. This can have a signifi-
cant effect on scaling. For example, a latency penalty may 
result if one processor updates a memory object within 
its cache, which is also accessed from another processor. 
The cache location will be invalidated because of the 
cache coherency hardware protocol, which ensures only 
one version of the data exists. In a CMP system, multiple 
threads typically access a single first-level cache; thus, 
colocating data that will be accessed within a single core 
may be appropriate.

Pools of worker threads. A good approach for con-
currency is to use a pool of worker threads; a general-
purpose, multithreaded engine can be used to process 
an aggregate set of work events. Using this model, an 
application gives discrete units of work to the engine and 
lets the engine process them in parallel. The worker pool 
provides a flexible mechanism to balance the work events 
across multiple processors or hardware threads. The 
operating system can automatically tune the concurrency 
of the application to meet the topology of the underlying 
hardware architecture.

Memory allocators. Memory allocators pose a signifi-
cant problem to scaling. Almost every code needs to allo-
cate and free data structures, and typically does so via a 
central system-provided memory allocator. Unfortunately, 
very few memory allocators scale well. The few that do 
include the open source Hoard, Solaris 10’s libumem slab 
allocator, and MicroQuill’s SmartHeap. It’s worth paying 
attention to more than one dimension of scalability: dif-
ferent allocators have different properties in light of the 
nature of allocation/deallocation requests.

CONDUCT SCALABILITY EXPERIMENTS EARLY AND OFTEN
Time has shown that the most efficient way of driv-
ing out scaling issues from an application is to perform 
scaling studies. Given the infinite space in which opti-
mizations can be made, it is important to follow a meth-
odology to prioritize the most important issues.

Modeling techniques can be used to mathematically 
predict response times and potential scaling bottlenecks 
in complex systems. They are often used for predicting 
the performance of hardware, to assist with design trade-
off analysis. Modeling software, however, requires inti-
mate knowledge of the software algorithms, code paths, 
and system service latencies. The time taken to construct 
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a model and validate all assumptions is often at odds with 
running scaling tests.

A well-designed set of scaling experiments is key to 
understanding the performance characteristics of an 
application, and with proper observation instrumenta-
tion, it is easy to pinpoint key issues. Scalability predic-
tion and analysis should be done as early as possible in 
the development cycle. It’s often much harder to retrofit 
scalability improvements to an existing architecture. 
Consider scalability as part of the application architecture 
and design.

Key items to include in scalability experiments are:
•  Throughput versus number of threads/processors. Does 

the throughput scale close to linearly as the amount of 
resource applied increases?

•  Throughput versus resource consumed (i.e., CPU, 
network I/O, and disk I/O) per transaction. Does the 
amount of resource consumed per unit of work increase 
as scale increases?

•  Latency versus throughput. Does the latency of a trans-
action increase as the throughput of a system increases? 
A system that provides linear throughput scalability 
might not be useful in the real world if the transaction 
response times are too long.

•  Statistics. Measure code path length in both number of 
instructions and cycles. 

OBSERVATION TOOLS ARE THE PRIMARY MEANS  
TO SCALABLE SOFTWARE
Effective tools are the most significant factor in improv-
ing application scalability. Being able to quickly identify 
a root cause of a scaling issue is paramount. The objective 
of looking for scaling issues is to easily pinpoint the most 
significant sources of serialization. 

The tools should help identify what type of issue is 
causing the serialization—the two classic cases being star-

vation resulting from escalating resource requirements as 
load increases, and increasing idle time as load increases. 
Ideally, the tools should help identify the source of the 
scaling issue rather than merely pointing to the object of 
contention. This helps with identifying not only what 
the contention point is, but also perhaps some offending 
code that may be overutilizing a resource. Often, once the 
source is identified, many obvious optimizations become 
apparent.

Consider tools that can do the following:
•  Locate key sources of wait time. What are the con-

tended resources, which one is causing the resource uti-
lization, and how much effect is the contention having 
on overall performance?

•  Identify hot synchronization locks. How much wall 
clock and CPU time is serialized in locking objects, and 
which code is responsible?

•  Identify nonscalable algorithms. Which functions or 
classes become more expensive as the scale of the appli-
cation increases?

•  Make it clear where the problem lies. This is done 
either in the application code, which you can affect, 
or by pointing to a contention point in a vendor-sup-
plied middleware or operating system. Even though 
the contention point may lie in a vendor code, it may 
result from how that code is being called, which can be 
affected by optimizing the higher-level code.

CMT AND SOFTWARE LICENSING
Another impact of the hardware architecture’s scal-
ing characteristics is on software licensing. Applica-
tion developers often use the number of processors in 
the system to determine the price of the software. The 
number of processors has been a convenient measure for 
software licensing, primarily because of the close correla-
tion between the costs of the hardware platform and the 
number of processors. By using a license fee indexed by 
the number of processors, the software vendor can charge 
a roughly proportional fee for software. 

This is, however, based on old assumptions that are 
no longer true. First of all, an operating system on a CMT 
platform reports one virtual processor for every thread in 
the chip, resulting in a very expensive software license for 
a low-end system. Software vendors have been scrambling 
to adjust for the latest two-core CMT systems, some opt-
ing for one license fee per core, and others for each physi-
cal chip. Licensing by core unfairly increases software 
licenses per dollar unit of hardware.

In the short term, operating system vendors are 
providing enhancements to report the number of cores 
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and physical processors in the system, but there is an 
urgent need for a more appropriate (and fair) solution. 
It is likely that a throughput-based license fee that uses 
standard benchmarks will be pursued. This would allow 
license fees to be charged in accordance with the actual 
processing power of the platform. Such a scheme would 
allow software licenses to scale when more advanced 
virtualization schemes, which divide up processors into 
subprocessor portions, are used (such as priority-based 
resource partitioning). These schemes are becoming more 
commonplace as utility computing and server consolida-
tion become more popular. The opportunity for operating 
system vendors is to choose a uniform metric that can 
be measured and reported, based on the actual use by an 
application.

IMPACT OF CMP FOR OPERATING SYSTEMS
The challenge for the operating system is twofold: provid-
ing scalable system services to the applications it hosts, 
and providing a scalable programming environment that 
facilitates easy development of parallel programs. 

CMP ENHANCEMENTS FOR OPERATING SYSTEMS
An SMP-capable operating system kernel works quite well 
on CMP hardware. Since each core or hardware thread in 
a chip has an entire set of registers, they appear to soft-
ware as individual CPUs. An unchanged operating system 
will simply implement one logical processor for every 
hardware thread in the chip. Software threads will be 

scheduled onto each hardware thread just as in an SMP 
system, with equal weighting according to the operating 
system kernel’s scheduling policy (see fi gure 5).

Basic changes to optimize for CMT processors will 
include elimination of any busy wait loops. For example, 
the idle loop is typically implemented as a busy spin that 
checks a run queue looking for more work to do. When 
multiple hardware threads share a single core, the idle 
loop running on one thread will have a detrimental effect 
on other threads sharing the core’s pipeline. In this exam-
ple, leveraging the hardware’s ability to park a thread 
when there is no work to do would be more effective.

Further operating system enhancements will likely be 
pursued to optimize for the subtle differences of CMPs. 
For example, with knowledge of the processor architec-
ture and some information about the behavior of the 
software, the scheduler may be able to optimize the place-
ment of software threads onto specifi c hardware threads. 
In the case of a CMP architecture with multiple hardware 
threads sharing a core, fi rst-level cache, and TLB (transla-
tion look-aside buffer), there may be a benefi t if software 
threads with similar memory access patterns (construc-
tive) are colocated on the same core, and those with 
destructive patterns are separated onto different cores.

OPERATING SYSTEM SCALING
The challenge with scaling operating system services has 
historically been the shared state between instances of the 
services. For example, consider a global process table that 
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needs to be accessed and updated by any program want-
ing to start a new process. In a multiprocessor system, 
synchronization techniques must be used to mitigate race 
conditions when two or more threads attempt to update 
the process table at the same time.

The common techniques require serialization around 
either the code that accesses these structures or the data 
structures themselves. Early attempts to port Unix to 
SMP hardware were crude—they were typically retrofits 
of existing operating system codes with simple, coarse-
grained serialization. For example, the first SMP Unix 
systems used a slightly modified implementation with a 
single global lock around the operating system kernel to 
serialize all requests to its data structures. Early versions 
of SunOS (1.x), Linux (2.2), and FreeBSD (4.x) kernels 
used this approach. Although easy to implement, this 
approach helps scalability only for applications that sel-
dom use operating system services. Applications that were 
entirely compute-intensive showed good scalability, but 
those that used a significant amount of operating system 
services saw serialization yielding little or no scalability 
beyond one processor.

In contrast, successful operating system scaling is 
achieved by minimizing contention, restricting serializa-
tion to only fine-grained portions of data structures. In 
this way, the operating system can execute code within 
the same region concurrently on multiple processors, 
serializing only momentarily while accessing shared data 
structures. This approach does, however, require substan-
tial architectural change to the operating system and in 
some cases a ground-up redesign focused on scalability.

A well-designed operating system allows high levels 
of concurrency through its operating system services. In 
particular, applications invoking system services through 
libraries, memory allocators, and other system services 
must be able to execute in parallel even if they access 

shared facilities. For example, multiple programs should 
be able to allocate memory concurrently without serial-
izing. Other areas that are critical to scalability include 
parallel access to shared hardware (e.g., I/O) and the 
networking subsystem.

SCALING ENHANCEMENTS IN FREEBSD
FreeBSD has seen a significant amount of scaling effort, 
starting with 5.x kernels.4 Architectural changes include 
new kernel memory allocators, synchronization routines, 
the move to ithreads, and the removal of the global 
kernel lock from activities such as process scheduling, 
virtual memory, the virtual file system, the UFS (Unix 
file system), the networking stack, and several common 
forms of inter-process communication. The scaling work 
in FreeBSD has successfully improved scaling (estimates 
suggest to the order of 12 processors).

SCALING ENHANCEMENTS IN LINUX
Scaling was greatly improved in Linux 2.2 kernels by 
breaking up the global kernel lock. It is said to scale on 
the order of two to four processors. Linux 2.4 scaling 
was improved to eight to 16 by introducing much finer-
grained locking in the scheduler and I/O subsystem. This 
improved the scaling of many items, including interrupts 
and I/O. Later efforts in Linux kernels focused on scaling 
the scheduler for larger numbers of processes and improv-
ing concurrency through the networking subsystem. 

SCALING ENHANCEMENTS IN SOLARIS
The Solaris operating system is built around the concept 
of concurrency, and serialization is restricted to very small 
and critical parts of data structures. The operating system 
is designed around the notion that execution contexts 
are individual software threads, which are scheduled and 
executed in parallel where possible.

Replacing the original Unix memory allocators with 
the Slab5 and Vmem6 allocators led to significant scal-
ability gains. These provide consistent in-time allocations 
as the object set sizes grow, and they pay special atten-
tion to avoid locking by providing per-processor pools of 
memory that allow allocations and deallocations to occur 
without having to access global structures.

Scalable I/O is achieved by allowing requesting threads 
to execute concurrently even within the same device 
driver, and further by processing interrupts from hard-
ware devices as separate threads, allowing scaling of inter-
rupt handling.7 

In some cases, there are requirements for high levels 
of concurrent access to data structures. For example, per-
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formance statistics for I/O devices require updates from 
potentially thousands of concurrent operations. To miti-
gate contention around these types of structures, statistics 
are kept on a per-processor basis and then aggregated 
when required. This allows concurrent access to updates, 
requiring serialization only when the statistics are read.

The Solaris networking code was rearchitected to elimi-
nate the majority of the global data structures by intro-
ducing a per-connection vertical perimeter.8 This allows 
the TCP/IP implementation to operate in near-lockless 
mode within a single connection, requiring locking only 
when global events such as routing changes occur.

Integrated observation tools are key to optimizing 
scaling issues. Facilities for observing sources of locking 
contention on systems with live workloads have been 
critical to making improvements in important areas. 
More recently, Dtrace, perhaps one of the more revolu-
tionary approaches to performance optimization, allows 
dynamic instrumentation of C and Java code.9 It can 
quickly pinpoint sources of contention from the top of 
the application stack through the operating system.

These types of techniques allow the Solaris kernel to 
scale to thousands of threads, up to 1 million I/Os per 
second, and several hundred physical processors. Con-
veniently, this scaling work can be leveraged for CMP 
systems. Techniques such as those described here, which 
are vital for large SMP scaling, are now required even 
for entry-level CMP systems. Within the next fi ve years, 
expect to see CMP hardware scaling to as many as 512 
processor threads per system, pushing the requirements 
of operating system scaling past the extreme end of that 
realized today.

OPERATING SYSTEM UTILIZATION METRICS
The reporting of processor utilization on systems with 
multithreaded cores poses a challenge. In a single-core 
chip, throughput often increases proportionally with pro-
cessor utilization. In a multithreaded chip, there is much 
greater opportunity for sharing of resources between 
hardware threads, and therefore a nonlinear relationship 
exists between throughput and the actual utilization of a 
processor. As a result, calculation of “headroom” based on 
reported processor utilization may no longer be accurate.

For example, a processor core with two threads (such 
as an Intel Xeon) presents itself to the operating system as 
two separate processors. If a software thread fully uses one 
of the threads and the other is completely idle, the pro-
cessor will appear 50 percent busy and be reported as such 
by the operating system. Running two of these threads on 
the processor may often yield only a 10 percent through-
put increase on Xeon architecture, but since both threads 
are utilized, it will report as 100 percent busy. So this 
system now reports 50 percent utilization when it’s at 90 
percent of its maximum throughput.

This effect will vary depending on how many of the 
resources are shared by hardware threads within the 
processor, and ultimately will need some redefi nition of 
the meaning of system utilization metrics, together with 
some new facilities for reporting. The impact on capacity 
planning methodology will also need to be considered.

LEVERAGING VIRTUALIZATION FOR PARALLELISM
So far we have examined how to fi nd ways to use the 
many hardware threads available with CMTs by scaling 
individual applications or operating systems. Another 
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way to use these resources effectively is to run multiple 
nonscalable applications or even several unoptimized 
operating systems at once, using techniques such as oper-
ating system or server virtualization.

These facilities typically allow multiple instances of an 
application to be consolidated onto a single server (see 
figure 6). 

For example, the Solaris Container facility allows mul-
tiple applications to reside within a single operating sys-
tem instance. In such an environment, you can leverage 
the cumulative concurrency as applications are added. By 
adding two Web servers, each of which has concurrency 
of 16 threads, you can potentially increase the system-
wide concurrency to 32 threads. This side effect presents a 
useful mechanism that allows you to deploy applications 
with limited scalability in a manner that can exploit the 
full concurrency of a CMP system.

Another relevant virtualization technology is the 
virtual machine environment, which allows multiple 
operating system instances to run on a single hardware 
platform. Examples of virtual machine technologies are 
VMware and Xen. These environments allow consolida-
tion of applications and operating systems on a single 
system, which provides a mechanism to deploy even 
nonscalable operating systems on CMP architectures, 
albeit with a little more complexity.

CMP REQUIRES A RETHINKING BY DEVELOPERS
The introduction of CMP systems represents a significant 
opportunity to scale systems in a new dimension. The 
most significant impact of CMP systems is that the degree 
of scaling is being increased by an order of magnitude: 
what was a low-end one- to two-processor entry-level 
system should now be viewed as a 16- to 32-way system, 
and soon even midrange systems will be scaling to several 
hundred ways.

For application developers, this represents a new or 
revised focus on intra-machine scalability within applica-
tions and a rethinking of how software license fees are 
calculated. For operating system developers, scalability 
to hundreds of ways is going to be a requirement. For 
deployment practitioners, CMP represents a new way to 
scale applications and will require consideration in the 
systems we architect, the way we tune, and the tech-
niques we use for capacity planning. Q

REFERENCES
1. AMD Opteron Processor; http://www.amd.com.
2.  Kongetira, P., Aingaran, K., and Olukotun, K. 2005. 

Niagara: a 32-way multithreaded SPARC processor.  
IEEE Micro 25 (2): 21–29.

3.  Amdahl, G. M. 1967. Validity of the single-processor 
approach to achieving large-scale computing capabili-
ties. Proceedings of AFIPS Conference: 483-485.

4.  The FreeBSD SMP Project; http://www.freebsd.org/
smp/.

5.  Bonwick, J. 1994. The Slab allocator: an object-caching 
kernel memory allocator. Sun Microsystems.

6.  Bonwick, J., and Adams, J. 2001. Magazines and 
Vmem: extending the Slab allocator to many CPUs and 
arbitrary resources. Sun Microsystems and California 
Institute of Technology.

7.  Kleiman, S., and Eykholt, J. 1995. Interrupts as threads. 
ACM Sigops Operating Systems Review 29 (2): 21-26.

8.  Tripathi, S. 2005. Solaris OS network performance. Sun 
White Paper (February).

9.  Cantrill, B. M., Shapiro, M. W., Leventhal, A.H. 2004. 
Dynamic instrumentation of production systems.  
Usenix Proceedings.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

RICHARD McDOUGALL, had he lived 100 years ago, would 
have had the hood open on the first four-stroke internal 
combustion gasoline-powered vehicle, exploring new tech-
niques for making improvements. He would be looking for 
simple ways to solve complex problems and helping pioneer-
ing owners understand how the technology worked to get 
the most from their new experience. These days, McDougall 
uses technology to satisfy his curiosity. He is a Distinguished 
Engineer at Sun Microsystems, specializing in operating sys-
tems technology and system performance. McDougall is the 
author of Solaris Internals (Prentice Hall, 2000; second edi-
tion, 2005), and Resource Management (Prentice Hall, 1999).
© 2005 ACM 1542-7730/05/0900 $5.00

EXTREME
Software Scaling 

MultiprocessorsFO
CU

S


