CS-4513 Distributed Systems
WPI, D-Term 2008
Hugh C. Lauer
Project 4 (40 points)
Assigned: Tuesday, March 25, 2008
Due: Sunday, April 27, 2008 at 6:00 PM
Introduction

This is the major project for the term. It is intended to give you practical experience with a distributed system or a file system implementation. You may select from any of the following or propose your own project. These projects are intended to be carried out in teams of up to four students. If you are unable or unwilling to work in a team, the last project (the web server) is an individual project, but it offers scope for fewer total points than the others.
The projects are:–

1. Port the open source version of VMware Tools, particularly vmhgfs, the VMware Host-Guest File System, into the kernel source tree of your Linux kernel and modify the VMware Tools configuration script accordingly.

2. Prototype a serverless file system on at least five virtual machines in the Fossil Lab.

3. Develop a classroom teaching topic for MapReduce and related issues, consisting of at least two hours of class time, readings, and other materials.

4. Get a copy of the public domain version of MapReduce, deploy it on a multiplicity of virtual machines in the Fossil Lab, and develop a practical laboratory project for teaching about it.

5. Propose an individual or team project of your own that highlights the principles and practice of distributed systems and that is of similar scope to those above.

6. (Individual project only) Develop your own web server to run on a CCC machine to serve pages from the WPI web site.
Deliverables

For the project, you must submit the following deliverables via the Turnin system. You may submit the deliverable under the name of any one of your team members, but you must identify all of your team members at the top of each file. (If a deliverable is too large to be accepted by Turnin, submit a placeholder and e-mail the project in a zip file to cs4513-staff at the CS department e-mail domain.) The deliverables are:–

· Project Proposal and team identification — April 1, 6:00 PM

· Design Specification — April 8, 6:00 PM

· Progress Submission — April 18, 6:00 PM

· Final Submission — April 27, 6:00 PM
In the event that your project turns out to be too big to be completed during this course, you should do as much as is reasonable, submit your partially completed work. In your submission, document what you have done, the time you have spent on it, and what still needs to be done. It would be particularly beneficial to show the results in a state that someone in a future course could continue the project.
Project Specifications
The following are brief descriptions of potential project topics for this assignment.
1. VMware Tools and vmhgfs file system
The VMware Tools are a set of drivers installed in the Linux system on the virtual machine distributed in class in order to facilitate the operation of the virtual machine on a VMware host. One of the useful features is a special file system that allows the host and guest operating system to share a folder. This is called the Host-Guest File System, or HGFS for short. A copy was installed in your Linux virtual machine as part of the VMware Tools installation prior to distribution of the virtual machines to the class.

When the file system and shared folders are enabled, the HGFS is automatically mounted on the directory /mnt/hgfs in the guest (Linux) operating system. When you open this directory, you can see the contents of the host folders that you specify when setting up your virtual machine. You can then transfer files back and forth between the host and the guest by copying or dragging and dropping.

Unfortunately, the VMware Tools are compiled specifically for each kernel, so that when the kernel is rebuilt, they stop working. This is particularly inconvenient in an Operating System course during which project assignments involve rebuilding the kernel multiple times.

The purpose of this project is to port the VMware Tools, specifically HGFS, directly into the Linux kernel source tree, so that it builds automatically, every time a student recompiles the kernel and so that it loads automatically.

VMware recently released open source versions of VMware Tools, which you should use for this project. These can be found at:–

http://www.vmware.com/resources/opensource/projects.html
and

http://open-vm-tools.sourceforge.net/
In this project, you must examine the source code for HGFS and other VMWare Tools, create appropriate subdirectories in a Linux kernel tree, figure out how to make an entry into the kernel configuration step so that HGFS gets compiled, and figure out how to modify the VMware Tools initialization scripts so that it gets loaded automatically.

Your primary deliverable for this project should be a write-up and one or more patch files that the instructor can use to modify a Linux system and kernel source tree prior to distribution to an Operating System class. The design specification should identify the files that need to be modified and the work that needs to be done to carry out this project.
This project was one of the options assigned during the graduate Operating System course (CS-502) last fall. A copy of that assignment can be found here (.doc, html). One student selected that option, determined that it is feasible, and partially completed the project. Please contact the professor for a copy of his results.

2. Serverless File system

In this project, you should make a prototype
 implementation of a serverless file system. A serverless file system is a distributed file system in which the blocks of the files are scattered redundantly across multiple machines and accessed remotely, as in NFS. The Google File System is a serverless file system, as is the xFS file system developed by Anderson, et. al., at Berkeley. References can be found here:–

· Ghemawat, Sanjay, Gobioff, Howard, and Leung, Shun-Tak, “The Google File System,” Proceedings of the 2003 Symposium on Operating System Principles, Bolton Landing (Lake George), NY, October 2003. (.pdf)

· Anderson, Thomas E., Dahlin, Michael D., Neefe, Jeanna M., Patterson, David A., Roselli, Drew S., and Wang, Randoph Y., “Serverless Network File Systems,” Proceedings of the 1995 Symposium on Operating System Principles, Copper Mountain, Colorado, December 1995. (.pdf)
Your prototype should be as simple as possible (but no simpler) and should be capable of operating on at least five virtual machines in the Fossil Lab, each of which stores some of the blocks of some of the files. The blocks of each file should be stored redundantly, so that if one machine is down, the file is still accessible.
There are several parts to this prototype:–

· The interface to the virtual file system. It is suggested that you crib as much of this as possible from the minix file system included with the Linux kernel of your virtual machine.

· A distributed, replicated indexing system that lets a client file system find the blocks of a file from among the replicas on the various machines and that keeps the replicas in sync with each other. This is the largest part of the work.

· A storage medium for actually storing the blocks of the files on an individual virtual machine. It is suggested that you simulate this on each machine with a large Linux file that is accessed via NFS.

This project is probably too big to be completed during the term. Partial completion will be satisfactory for this course if you can more precisely define the project, implement some of it, and break it into tractable pieces for a future instance of a distribute systems course.
3. MapReduce teaching topic
Develop a teaching module for MapReduce as an example of a distributed computing environment. The module should be aimed at senior-level undergraduate students and/or first-year graduate students — for example, CS-4513 in a future term. It should include lecture slides, notes, reading materials, and/or anything else for at least two hours of class time plus outside reading time by students. The may define the format of the class session(s).
The module should address at least the following three main subtopics, along with any others that you can think of as important:–

· What classes of computational problems can be solved using MapReduce? Explain the semantics of the Map and Reduce operations, give examples of how it works conceptually, and discuss why it is appropriate for those problems.

· How does MapReduce naturally partition into a distributed computation? What topics from this Distributed Computing course are relevant to a distributed implementation of MapReduce? How does it scale with the size of data?
· What are the practical impacts of distributing MapReduce, including reliability, failures, recovery, and what are the requirements of the underlying file system?
This module should say as much as practical about the Google version of MapReduce and the Google file system that supports it.
The two primary references are:–

Dean, Jeffrey, and Ghemawat, Sanjay, “MapReduce: Simplified Data Processing on Large Clusters,” Communications of the ACM, vol 51, #1, January 2008, pp. 107-113. (.pdf)

Ghemawat, Sanjay, Gobioff, Howard, and Leung, Shun-Tak, “The Google File System,” Proceedings of the 2003 Symposium on Operating System Principles, Bolton Landing (Lake George), NY, October 2003. (.pdf)

You should follow the references cited in these documents and add others as appropriate to make up the reading list for this topic.
4. MapReduce laboratory experiments

Get a copy of a public domain implementation of MapReduce and deploy it on multiple virtual machines in the Fossil Lab (or some other suitable venue). Experiment with it and propose a programming project for CS-4513 in future years. This should complement the teaching module specified in item #3 above.
The principal MapReduce paper (Dean and Ghemawat, CACM, January 2008) cites two public implementations of the MapReduce abstraction. Because of the widespread interest in the concept, there are likely to be others available or in progress. You should seek out such implementations and try to get one (for free) into our laboratory for experimental purposes. You should then try it out, see what you can do with it, and see how you can stress it in the distributed environment.
The goal is to create a programming project assignment to use in a future course. Ideally, this would include:–

· Guidance to the instructor and teaching assistants about how to set up the laboratory environment, and

· An outline of a project handout for students explaining the assignment.

It is quite possible that this project is too large to completed in this term or that the publicly available implementations of MapReduce are too immature for student projects. In that case, do as much as you can, learn and document as much as you can discover about the system you selected, and propose what the next steps might be to develop such a project for a CS-4513 course.
5. Student-defined project
Define your own individual or team project similar in size and scope to the ones above and use it to illustrate the practical concepts of distributed computing from this course. For example, you may convert an existing project implementation from another course to be distributed across multiple platforms.
In your project proposal (the first deliverable), lay out the goals of what you would like to accomplish. If you are unsure of whether your idea is appropriate, please communicate with the professor by e-mail before the due date of this proposal.

By the time you are ready to submit your design specification (the second deliverable), you should have done enough on your project to have a good feel for what needs to be done to complete it. This specification should list the things that you will submit for this assignment. You should also identify the code that you have to write or modify, the experiments you need to carry out, your test plan, or whatever else is appropriate to define the rest of the work of your project. Finally, please include a sentence or two about how you would like your project to be evaluated.

If, as you approach the project assignment due date, you discover that you “bit off more than you can chew,” submit partial results and explain what would be needed to complete the project. Alternatively, you may scale back the project and produce something that works but is less than you had originally intended.

6. Web server

For those who are for some reason not able put together a team or define a project in one of the categories above, an individual project is provided. This is to implement a simple but real, multi-threaded web server capable of serving real Web pages to conventional browsers. You will have to listen on a socket, accept connection requests, spawn a thread to handle each connection request, and resume listening. The thread must interpret HTTP commands, find the appropriate web page, and return it to the caller. You should also implement a simple web client that you can use for debugging purposes.

This is a typical project assigned in a distributed system or advanced operating system course. In particular, it was assigned in CS-4513 last year (.doc, html, .ppt, html slides); your project should be based on that assignment. You must complete the extra credit part of that assignment regarding persistent connections for this project this year.
This is an individual project. It carries less weight than any of the other options of this assignment. “Carrying less weight” means that even if you complete this project satisfactorily, it would be difficult to earn an “A” in this course (unless you can convince the professor that your implementation is equivalent in size and scope to other options of this assignment). Nevertheless, it may be an appropriate choice of project for some students, especially graduating seniors whose course load includes other substantial project components.
� 	Prototype means that the implementation should work well enough to demonstrate the principles, but it does not have to be complete enough or ready for anyone to use it to actually get work done.

� 	You may crib from any other Linux file system, but minix is believed to be the simplest.

PAGE
6

