1/29/2016

Outline

* Socket basics
* Socket details (TCP and UDP)

Distributed Computing Systems « Socket options
* Final notes
Sockets
Socket Basics (1 of 2) Socket Basics (2 of 2)
* An end-point for an Internet network connection i . i
— What application layer “plugs into” * End point determined by two things:
User Application — Host address: IP address is Network Layer
M — Port number: is Transport Layer
Operating System] . .
Transport Layer * Two end-points determine connection >
Network Layer socket pair
—¢1:206.62.226.35,p21+198.69.10.2,p1500
* User sees “descriptor” - integer index or object handle
— Like: FILE *, or file index from open () —€2:206.62.226.35,p21+198.69.10.2,p1499
— Returned by socket () call (more later)
— Programmer cares about Application Programming Interface (API)
Ports Transport Layer
¢ Numbers (below is typical, since vary by OS): * UDP: User Datagram Protocol
— 0-1023 “reserved”, must be root —ho acknowlgdg_ements
—1024-5000 “ephemeral”, temporary use — no retransmissions

— out of order, duplicates possible
— connectionless
e TCP: Transmission Control Protocol
— reliable (in order, all arrive, no duplicates)
— flow control

— Above 5000 for general use
* (50,000 is specified max)
* Well-known, reserved services (see
/etc/services in Unix). E.g.,

FTP 21 — connection-based

HTTP 80 * Note, TCP ~95% of all flows and packets on Internet
IMAP 220 — (What applications may use UDP?)

World of Warcraft 1119 & 3724 — (What protocol for distributed shell?)

1/29/2016

Outline

¢ Socket basics (done)
* Socket details (TCP and UDP) (next)
* Socket options

* Final notes

Socket Details Mini-Outline

Unix Network Programming, W. Richard Stevens, 2nd
edition, ©1998, Prentice Hall

Beej's Guide to Network Programming

* Project 2 = Includes links to samples
— TCP Server and TCP Client (both in C)
¢ Addresses and Sockets
e Examples (talk-tcp, listen-tcp, ...)
¢ Misc stuff
— setsockopt (), getsockopt ()
— fentl ()

Addresses and Sockets

* Structure to hold address information

¢ Functions pass info (e.g., address) from user to OS
bind()
connect ()
sendto ()

* Functions pass info (e.g., address) from OS to user
accept ()

recvfrom()

Socket Address Structure

struct in_addr {
in_addr_t s_addr;

}i

/* 32-bit IPv4 addresses */

struct sockaddr_in {

unit8_t sin_len; /* length of structure */
sa_family t sin_family; /*AF_INET*/
in_port_t sin_port; /* TCP/UDP port number */
struct in_addr sin_addr; /* IPv4 address (above) */
char sin_zero[8];/*unused */

}i

Also “generic” and “IPv6” socket structures

Server TCP Client-Server

“well-known”
port

Client

(Block until connection) “Handshake”

Data (request)

Data (reply)

socket ()

int socket (int family, int type, int protocol);
Create socket, giving access to transport layer service

e family is one of

— AF_INET (IPv4), AF_INET6 (IPv6), AF_LOCAL (local Unix),

— AF_ROUTE (access to routing tables), AF_KEY (for encryption)
¢ type is one of

— SOCK_STREAM (TCP), SOCK_DGRAM (UDP)

— SOCK_RAW (for special IP packets, PING, etc. Must be root)
* setuid bit (-rwsr-xr-x root 2014 /sbin/ping*)

* protocol is 0 (used for some raw socket options)

* upon success returns socket descriptor
— Integer, like file descriptor > index used internally
— Return -1 if failure

bind ()

int bind(int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

Assign local protocol address (“name”) to socket

* sockfd is socket descriptor from socket ()
* myaddr is pointer to address struct with:

— port number and IP address

— if portis 0, then host will pick ephemeral port

* not usually for server (exception RPC port-map)

— IP address == INADDR_ANY (unless multiple nics)
* addrlen is length of structure
¢ returns 0 if ok, -1 on error

— EADDRINUSE (“Address already in use”)

1/29/2016

listen ()

int listen (int sockfd, int backlog);
Change socket state (to passive) for TCP server

* sockfd is socket descriptor from socket ()
¢ backlog is maximum number of incomplete
connections
— historically 5
— rarely above 15 even on moderately busy Web server!
* sockets default to active (for client)
— change to passive so OS will accept connection

accept ()

int accept (int sockfd, struct sockaddr
*cliaddr, socklen_t *addrlen);
Return next completed connection

blocking call (by default)
* sockfd is socket descriptor from socket ()

cliaddr and addrlen return protocol address from
client

e returns brand new descriptor, created by OS

* note, if create new process or thread, can create
concurrent server

close ()

int close (int sockfd);
Close socket for use

* sockfd is socket descriptor from socket ()

* closes socket for reading/writing
— returns (doesn’t block)
— attempts to send any unsent data
— socket option SO_LINGER
* block until data sent
« ordiscard any remaining data
— returns -1 if error

TCP Client-Server

Server

Client

[accept ()|

(Block until connection) “Handshake”

Data (request)

Data (reply)

close() :

connect ()

int connect (int sockfd, const struct
sockaddr *servaddr, socklen_ t addrlen);

Connect to server

* sockfd is socket descriptor from socket ()
* servaddr is pointer to structure with:
— port number and IP address
— must be specified (unlike bind ())
* addrlen is length of structure
¢ client doesn’t need bind ()
— OS will pick ephemeral port
* returns socket descriptor if ok, -1 on error

Sending and Receiving

int recv(int sockfd, wvoid *buff, size_t
mbytes, int flags);

int send(int sockfd, wvoid *buff, size_t
mbytes, int flags);

e Sameas read () andwrite () but for flags
— MSG_DONTWAIT (this send non-blocking)
— MSG_OOB (out of band data, 1 byte sent ahead)
— MSG_PEEK (look, but don’t remove)
— MSG_WAITALL (don’t return less than mbytes)
— MSG_DONTROUTE (bypass routing table)

1/29/2016

UDP Client-Server

Server

= “well-known'™

port Client

(Block until receive datagram) Data (request)

P [Cctoseq]

- No “handshake”
- No simultaneous close

Sending and Receiving

int recvfrom(int sockfd, void *buff, size_t mbytes, int
flags, struct sockaddr *from, socklen_t *addrlen);

int sendto(int sockfd, void *buff, size_t mbytes, int
flags, const struct sockaddr *to, socklen_t addrlen);

e Same as recv () and send () but for addr

— recvfromfillsin address of where packet came
from

— sendto requires address of where sending
packet to

connect () with UDP

Record address and port of peer
— datagrams to/from others are not allowed
— does not do three way handshake, or connection

— “connect” a misnomer, here. Should be
setpeername()

Use send() instead of sendtof)
Use recv() instead of recvfromn()

Can change connect or unconnect by repeating
connect() call

(Can do similar with bind () on receiver)

Why use connected UDP?

* Send two * Send two datagrams
datagrams connected:
unconnected: — connect the socket
— connect the socket — output first dgram
— output first dgram — ouput second dgram

— unconnect the socket
— connect the socket

— ouput second dgram
— unconnect the socket

Outline
Socket basics (done)
Socket details (TCP and UDP) (done)
Socket options (next)

Final notes

Socket Options

setsockopt (), getsockopt ()
SO_LINGER

— upon close, discard data or block until sent
SO_RCVBUF, SO_SNDBUF

— change buffer sizes

— for TCP is “pipeline”, for UDP is “discard”
SO_RCVLOWAT, SO_SNDLOWAT

— how much data before “readable” via select()
SO_RCVTIMEO, SO_SNDTIMEO

— timeouts

1/29/2016

Socket Options (TCP)

* TCP_KEEPALIVE

—idle time before close (2 hours, default)
* TCP_MAXRT

—set timeout value
* TCP_NODELAY

— disable Nagle Algorithm

— won’t buffer data for larger chunk, but sends
immediately

fcntl ()

‘File control’ but used for sockets, too

Signal driven sockets

Set socket owner

Get socket owner

Set socket non-blocking

flags = fcntl (sockfd, F_GETFL, O0);
flags |= O_NONBLOCK;

fentl (sockfd, F_SETFL, flags);
Beware not getting flags before setting!

Final Notes — Distributed Shell

« TCP (not UDP)

* Does need to handle more than one client at a
time (a concurrent server)

* Refer to sample code online (talk, 1isten)
* Recommendation:

— Develop shell independently of sockets

