
2/16/2016

1

Review

CS 4513

File Systems - Partitions

• What is a hard disk partition?

File Systems - Partitions

• What is a hard disk partition?

– Physical (or logical) storage space division on disk

– Typically, so can put a file system inside the

partition

– Contains separate collections of directories

File Systems - Partitions

• What is an MBR/GPT for?

File Systems - Partitions

• What is an MBR/GPT for?

– Contain code for boot loader so BIOS can load

– Contain partition table (with partition information)

File Systems - Partitions

• How does an OS get access to a file system?

2/16/2016

2

File Systems - Partitions

• How does an OS get access to a file system?

– File system is mounted by OS

– Mounting reads file system information from

superblock, where superblock provides details on

layout of file system data (e.g., free space, file

descriptors…)

File Systems - File Descriptors

• What is a file descriptor?

File Systems - File Descriptors

• What is a file descriptor?

– A handle/name/pointer that provides access to

the blocks of data associated with a file

File Systems - File Descriptors

• What is good about storing files as contiguous

blocks? What is bad?

File Systems - File Descriptors

• What is good about storing files as contiguous

blocks? What is bad?

– Good: file descriptors are simple (number +

length)

– Good: reading whole file can be efficient

– Bad: Changing file size after creation problematic.

Fragmentation (internal and/or external)

File Systems - File Descriptors

• Why is a file allocation table (FAT) better than

a pure linked-list when storing disk blocks?

2/16/2016

3

File Systems - File Descriptors

• Why is a file allocation table (FAT) better than

a pure linked-list when storing disk blocks?

– FAT separates linked-list from disk blocks, allowing

links to be traversed in memory rather than

reading from disk

File Systems - File Descriptors

• What is an inode?

File Systems - File Descriptors

• What is an inode?

– A (Unix) file descriptor containing attributes for

file, and pointers to disk blocks (and indirect block

pointers)

File Systems - Directories

• How are directories similar to files? How are

they different?

File Systems - Directories

• How are directories similar to files? How are

they different?

– Similar – both contain data, accessed through

obtaining file descriptor via “open”, then

“read”/”write” and “close”

– Different – access to contents (data) restricted to

specific OS systems calls (e.g., readdir()), and data

format/structure is specific to file system

File Systems - Directories

• Where are file attributes stored?

2/16/2016

4

File Systems - Directories

• Where are file attributes stored?

– It depends. Attributes can either be stored on the

disk (generally bad since slow), with the file

descriptor (e.g., an inode) , or with the file name in

the directory entry

File Systems - Aliases

• What is an alias in terms of file systems?

• How is hard-link in typical Unix file system

implemented?

File Systems - Aliases

• What is an alias in terms of file systems?

– Means of providing additional/alternate name for

same file (i.e., to refer to blocks on disk associated

with file from two different directory paths)

• How is hard-link in typical Unix file system

implemented?

– Add additional directory entry referring to same

inode

File Systems – Journaling

• What is journaling for file systems and why is

it needed?

File Systems – Journaling

• What is journaling for file systems and why is

it needed?

– Journaling is a means of ensuring integrity in a file

system in the event of a failure (e.g., power

failure) during modification to the file system

– It is needed because typical disks guarantee

atomicity of single block operations, but not

multiple block operations. Many modifications to

a file system require multi-block operations.

File Systems – Blocks

• Describe one method of keeping track of free

blocks in a file system

• What is the best block size to choose when

formatting a partition with a file system?

• What are the performance tradeoffs in

choosing the block size?

2/16/2016

5

File Systems – Blocks

• Describe one method of keeping track of free blocks in a
file system
– A linked list of free blocks (blocks of free blocks linked together)

– A bitmap of free blocks (1 bit for each free block)

• What is the best block size to choose when formatting a
partition with a file system?
– It depends. For many small files, small blocks will mean less

wasted space (internal fragmentation). But for larger files, large
blocks can be more efficiently read and allocated.

• What are the performance tradeoffs in choosing the block
size?
– Larger block sizes generally has better maximum throughput,

but smaller block sizes generally have better disk efficiency (less
internal fragmentation).

Sockets+

• What does bind() do?

– Who calls bind(), the client or server?

• How do you re-direct stdout to a socket?

Sockets+

• What does bind() do?

– Who calls bind(), the client or server?

– Bind assigns local protocol address (“name”) to a

socket. Bind is typically called by the server, to allow

client to reach at well-known port (and address)

• How do you re-direct stdout to a socket?

– dup2(first, second) – create a copy of a file

descriptor (first to second), closing second as needed

HLM02

• Compare and contrast WAFL inodes to

traditional i-nodes.

• What is a snapshot?

• How is it implemented?

– What is copy-on-write?

HLM02

• Compare and contrast WAFL inodes to traditional inodes
– Similar in that meta data (e.g., owner) and block pointers

– Different in that WAFL pointers all same (e.g., all direct or all
indirect) and really small files in inode

• What is a snapshot?
– A “copy” of the file system at a given time

• How is it implemented?
– What is copy-on-write?

– Snapshots are implemented by copying the root inode. Any
subsequent change to files copy data (including all blocks of
meta data).

HML02

• Performance methodology for NFS appliance?

• Why not simply time to open() + read()?

• Why not simply top throughput?

2/16/2016

6

HML02

• Performance methodology for NFS appliance?
– Apply workload (e.g., LADDIS) to appliance, where workload

produces range of NFS requests per minute

– Look for “knee”, where response time sharply increases

• Why not simply time open() + read()?
– NFS servers may be fast for basic operations, but care about

scalability as support many users and load

• Why not simply max throughput?
– Users care about more than just max data rate, also care about

how fast individual request provided – response time

Distributed File Systems

• Compare and contrast stateful vs. stateless

server for distributed file system

Distributed File Systems

• Compare and contrast stateful vs. stateless server for
distributed file system
– Stateful (server maintains client states)

• Shorter requests (since already authenticated, have last access)

• Quicker request processing

• Cache coherence possible

• File locking possible

– Stateless (server no info on clients)
• Longer requests with access/offset

• No open/close neede

• Easier for server to recover from crash

• No server state for client � more scalable

• Cache coherence problem

• No file locking

Distributed File Systems

• How does NFS (v3) handle potentially out-

dated client caches?

Distributed File Systems

• How does NFS (v3) handle potentially out-

dated client caches?

– Server stateless so client most poll

– Client read:

• ~3 seconds for file, ~30 seconds for directory

– Client write:

• Send “dirty” block about every 30 seconds

Distributed Systems

• What are 3 techniques to scale distributed

systems? What are the issues with each?

2/16/2016

7

Distributed Systems

• What are 3 techniques to scale distributed

systems? What are the issues with each?

– Hiding latency – do server-type computations on

client-side. Issue? Client capabilities, “cheating”

– Distribution – spread information processing to

more than one location. Issue? “Routing” to find

information, performance

– Replication – copy information to increase

availability. Issue? Consistency

