Distributed Computing Systems

Peer-to-Peer

2/26/2016

Definition of Peer-to-Peer (P2P)

* Significant autonomy from central servers
* Exploits resources at edges of Internet
— Storage and content
— Multicast routing
— CPU cycles
— Human knowledge (e.g., recommendations,
classification)

* Resources at edge may have intermittent
connectivity

P2P Includes

* P2P file sharing

— Napster, gnutella, KaZaA, eDonkey ...
¢ P2P communication

— Instant messaging

— Voice-over-IP (e.g. Skype)
¢ P2P multicast routing

— Mbone, Yoid, Scattercast
¢ P2P computation

— seti@home
¢ P2P apps built on overlays

— PlanetLab

Introduction Outline
* Definition (done)

* Overlay Networks (next)

* P2P Applications

Overlay Networks

* Network on top of another network

Overlay
edge

Overlay Network — Overview

Virtual edges

— e.g.,a TCP connection

— Simpler: an IP address (connection method not specified)
Creation

— May be structured (e.g., tree) or unstructured (nodes
randomly choose neighbors)

— May or may not take into account proximity of nodes
Overlay maintenance

— Periodically “ping” to make sure neighbor alive

— Or, verify liveness while sending messages

— If neighbor goes down, may establish new edge

— New node needs to “bootstrap” in

2/26/2016

Overlay Networks —
at Application Layer

* Tremendous design flexibility
— Topology, maintenance
— Message types
— Protocol
— Underlying protocol (TCP/UDP)
¢ Underlying network
transparent

— But some may exploit proximity
(e.g., peers in same ISP)

Examples of Overlays

* Domain Name Service (DNS)

* Border Gateway Protocol (BGP) routers (with
their peering relationships)

* Content Distribution Networks (CDNs)

* Application-level multicast (e.g., Mbone)

* And P2P applications!

Introduction Outline

¢ Definition (done)
¢ Overlay Networks (done)
¢ P2P Applications (next)

P2P File Sharing — General

* Aliceruns P2P clienton her < Registers her content in

laptop P2P system
* Intermittently connected e Asks for “Hey Jude”
— Gets new IP address each * Application displays other
time peers with copy

* Alice choses one, Bob
* File is copied from Bob's
computer to Alice’s
> P2pP
¢ While Alice downloads,
others upload

P2P File Sharing Capabilities

« Allows Alice to show directory in her file
system
— Anyone can retrieve file from it
— Like Web server

« Allows Alice to copy files from other’s
— Like Web client

« Allows users to search nodes for content
based on keyword matches

Seems harmless
— Like search engine (e.g., Google) fome |

Copyright Issues (1 of 2)

Direct Infringement Indirect infringement

« End users who download or * An individual accountable for

load convright works actions of others
up| pyright wi « Contributory

— Knew of direct infringement
— And caused, induced or

I materially contributed to direct
» infringement
* Vicarious
x / A
— Able to control direct infringers
direct infringers (e.g. terminate accounts)

— And derived direct financial
benefit

(Knowledge not necessary)

Copyright Issues (2 of 2)

Betamax VCR Defense

Manufacturer not liable for
contributory infringement
“Capable of substantial,
non-infringing use”

But in Napster case, court
found defense does not
apply to all vicarious liability

Guidelines for P2P developers

 Total control so that can be
sure there is no direct
infringement

or

* No control — no remote kill
switch, no customer support

* Actively promote non-
infringing use of products

« Disaggregate functions

— Indexing, search transfer

2/26/2016

Large P2P File Sharing Systems

* Napster

— Disruptive, proof of concept

e Gnutella

— Open source, non-centralized search

e KaZaA/FastTrack

— Surpassed the Web (in terms of bytes)

eDonkey/Overnet

— Distributed Hash Table (distributed content)

Is success due to massive number of servers (i.e.,

P2P aspect) or simply because content is “free”?

P2P Communication

Alice runs IM client on PC

Intermittently connects to

Internet

— Gets new IP address each
time

Registers herself with

“system”

Learns from “system” that

Bob (in her buddy list) is

active

 Alice initiates direct TCP
connection with Bob
>p2p

¢ Alice and Bob chat

* Can also be voice, video
and text (e.g., Skype)

P2P Distributed Computing:
seti@home

» Search for extra
terrestrial (ET)
intelligence

Central site collects radio
telescope data

Data divided into work
chunks (300 Kbytes)

* User obtains client

— Runs in background (when
screensaver on)

* Peersetsup TCP
connection to central
computer

* Downloads chunk

* Peer does FFT on chunk,
uploads results, gets new
chunk

* Not Peer-to-peer, but
exploits resource at
network edge

Outline
Introduction (done)
P2P file sharing techniques (next)
Uses of P2P
Challenges

P2P Common Primitives

* Join: how to | begin participating?
* Publish: how do | advertise my file?

* Search: how to | find a file?
* Fetch: how to | retrieve a file?

Top 2, relatively easy

Bottom 2, more of challenge

2/26/2016

Example: Searching
P2P Challenges -
1000’s of nodes , N2 ‘
Y Cha"enge 1 - Search Set of nodes may change N1 N3
— Human'’s goals - find file
— Given keywords or human description, find a Key="title”
specific file Value=MP3 data... Cllent
Publisher Lookup(“title”)
* Challenge 2 — Fetch Py N P
— One file determined -> get bits ‘4 Ns ‘6
— Computer goal, obtain content 2
* Needles versus Haystacks
Searching for top 40 pop song? Or obscure punk track ‘81 nobody’s heard of?
* Search expressiveness
Whole word? Regular expressions? File names? Attributes? Whole-text search?

What’s out there? Next Topic...
Central Flood Super- Route . Centralized Database
node flood "~ Napster
Whole File |Napster |Gnutella Freenet
Chunk BitTorrent KaZaA (DHTs)
Based (bytes, not | eDonkey2k
chunks) New BT

Napster Legacy Napster: History

* May ‘99: Shawn Fanning
(freshman at Northeastern)

* Paradigm shift

well known Services Hb/s

' . 20 B e e
* Not the first (probably Eternity, from Ross founds Napster , mEEElE &
And inC brid * Dec ‘99: first lawsuit H &
nderson in Cambridge) * Mar 00: 25% UWisc traffic 3
— http://www.cl.cam.ac.uk/~rjal4/eternity/eternity.html Napster
: : : . « Apr ‘01: US Circuit Court of R 2000 P
* Butinstructive for what it got right Appeals: “Napster knew users | 8fwum o o “wram o o B 1o
« And wrong... violating copyright laws” BN it o @ 10w B orw, oo o o T are 19
e Jul ‘01: # simultaneous online | M T ™ dinia vt o.rsssior oo o amocs
¢ Also had an economic message... users = e
— Napster: 160K, Gnutella: 40K,
* And Iegal... Morpheus (KaZaA): 300K

Napster: History

2/26/2016

Napster: Overiew

* Application-level, client-server protocol over
TCP

* Centralized Database:
—Join: on startup, client contacts central server
— Publish: reports list of files to central server

— Search: query the server = return someone that
stores the requested file
« Selected as best based on “pings”

— Fetch: get the file directly from peer

+ Jul’01: Napster S
shuts down SM :
Q
— Judge orders . i
Napster to pull UM i
©n i
plug... £ —gnifl
+ But other file et
sharing apps take i
0.0 rb mr sr v om0 g s oct hos
over!
wm gnutella
mm napster
== fastrack (KaZaA)
Napster: Publish
‘ [2} &
B2 ‘
u &
'8
BaaEas Publish

'Y 2
@ A

a8z
123.2.21.23
4

&

I'have X, Y, and Z!

Napster: Search

123.2.0.18 ‘

2 &2

‘ ‘\)\/\:_,
&
2

search(A) &
"> returns 123.2.0.18
- returns 163.2.1.0

P 2
BAZ

Where is file A? R

i Client “pings” each host,

ﬁ i picks closest
)

Napster: Discussion

* Pros:
— Simple
— Search scope is O(1)
— Controllable (pro or con?)

* Cons:
— Server maintains O(N) state
— Server does all processing
— Single point of failure

— (Napster’s server farm had difficult time keeping
up with traffic)

Next Topic...

* Query Flooding (Searching)

— Gnutella

Query Flooding Overview

¢ Decentralized method « Join: on startup, client

of searching
— Central server directory

contacts a few other nodes
— these become its “neighbors”

no longer bottleneck « Publish: no need
- I\I/I']oreldiflficult to “pull + Search: ask neighbors

the plug (Gnutella uses 7), who ask
Each peer: their neighbors, and so on...

— Stores selected files
— Routes queries to and sender.

from neighbors — TTL limits propagation (Gnutella
— Responds to queries if uses 10)

files stored locally — Reverse path forwards
— Serves files responses (not files)

* Fetch: get the file directly
from peer

when/if found, reply to

2/26/2016

Query Flooding

I have file A.
I have file A. 92— 8 [Geees
2 @ ©
G2 2
@

2
|\
2
G228z
Query
2

Where is file A?

a3

Flooding Discussion

Pros:

— Fully de-centralized

— Search cost distributed

— Processing @ each node permits powerful search semantics
Cons:

— Search scope is O(N)

— Search time is O(???) — depends upon “height” of tree

— Nodes leave often, network unstable
TTL-limited search works well for haystacks

— For scalability, does NOT search every node. May have to re-
issue query later

Example: Gnutella

Gnutella: History

* Mar’00: J. Frankel and T. Pepper from
released Gnutella (AOL)

— Immediately withdrawn, but Slashdot-ted
* Became open source
— Good, since initial design was poor
* Soon many other clients: Bearshare,
Morpheus, LimeWire, etc.

’01: many protocol enhancements including
“ultrapeers” .

‘'www.computing2010.com/expansions.php?id=07

Gnutella: Discussion

Researchers like it because it is open source
— But is it representative for research?

Users’ anecdotal comments: “It stinks”

— Tough to find anything

— Downloads don’t complete

Fixes

— Hierarchy of nodes

— Queue management

— Parallel downloads

Next Topic...

« Supernode Query Flooding (Searching)

— KaZaA

Flooding with Supernodes

¢ Some nodes better
connected, longer
connected than others
— Use them more heavily
¢ Architecture
— Hierarchical
— Cross between Napster
and Gnutella
* “Smart” Query Flooding

* Join: on startup, client
contacts a “supernode”
— may at some point

become one itself

* Publish: send list of files
to supernode

* Search: send query to

supernode, supernodes

flood query amongst

themselves.

Fetch: get the file

directly from peer(s)

— can fetch simultaneously
from multiple peers

2/26/2016

Stability and Superpeers

* Why superpeers?
— Query consolidation
* Many connected nodes may have only a few files

* Propagating query to sub-node would take more b/w than
answering it yourself

— Caching effect
* Requires network stability
* Superpeer selection is time-based

— How long you’ve been on good predictor of how long you’ll
be around

Supernodes Network Design

“Super Nodes”

\

%»1~\
/CA

&

Supernodes: Publish

_

o

1»\

’“\\

B

lhave X! BB
@2
123.2.21.23

Supernodes: Search

Query//p\,kmhn

o=

Where is file A?

12326«18

Supernodes: Fetch
(And use of hashes...)

More than one node may have requested file...
How to tell?

— Must be able to distinguish identical files

— Not necessarily same filename

— Same filename not necessarily same file...

Use Hash of file

— KaZaA uses UUHash: fast, but not secure

— Alternatives: MD5, SHA-1
How to fetch?

— Get bytes [0..1000] from A, [1001...2000] from B

2/26/2016

Supernode Flooding Discussion

* Pros:
— Tries to take into account node heterogeneity
* Bandwidth
* Host Computational Resources
* Host Availability (?)
— Rumored to take into account network locality
— Scales better
¢ Cons:
— Still no real guarantees on search scope or search time
 Similar behavior to plain flooding, but better

* Example: KaZaA

KaZaA: History

* In 2001, KaZaA created by Dutch company Kazaa BV
* Single network called FastTrack used by other clients as well
— Morpheus, giFT, etc.
Eventually protocol changed so other clients could no longer
talk to it
* Most popular file sharing network in 2005 with >10 million
users, sharing over 10,000 terabytes of content (numbers
vary)
— More popular than Napster
— Over 50% of Internet traffic at one time

* MP3s & entire albums, videos, games

KaZaA: The Service

* Optional parallel downloading of files
— User can configure max down and max up

* Automatically switches to new download server when
current server unavailable

* Provides estimated download times

* Queue management at server and client
— Frequent uploaders can get priority

* Keyword search

* Responses to keyword queries come in waves: stops when x
responses are found

* From user’s perspective, resembles Google, but provides
links to mp3s and videos rather than Web

KaZaA: Technology

* Software
— Proprietary
— Control data encrypted
— Everything in HTTP request and response messages
* Each peer a supernode or assigned to a
supernode
— Each SN has about 100-150 children

— Each SN has TCP connections with 30-50 other
supernodes

(Measurement study next slide)

KaZaA Measurement Study

— 0N o SN connactens]

! e,
M’”\’ N
)

o2 38388¢%
=

Number of active TCP connections

KaZaA Measurement Study

* KazaAis more than
one workload!
— Many files < 10MB (e.g.,

Audio Files) 1
B requests

03
— Many files > 100MB 08 #bytes transferred
(e.g., Movies) 07
os
os
04
03
S 02
o1 %
0

<10 10-100 >100
object size (MB)

% of requests/bytes

KaZaA: Architecture

* Nodes with more connection bandwidth and
more availability = supernodes (SN)

* Each supernode acts as a min-Napster hub
— Tracking content of children (ordinary nodes, ON)
— Maintaining IP addresses of children

* When ON connects to SN, upload metadata
— File name
— File size

— Content hash — used for fetch request, rather than
name

— File descriptions — used for keyword matches

2/26/2016

KaZaA: Overlay Maintenance

* List of potential supernodes when download
software

* New peer goes through list until finds
operational supernode
— Connects, contains up-to-date list (200 entries)
— Nodes in list are “close” to ON
— Node pings 5 nodes, connects to one

* If supernode goes down, node obtains

updated list and choses new supernode

KaZaA: Queries

* Node first sends query to supernode
— Supernode responds with matches
— If x matches found, done
¢ Otherwise, supernode forwards query to
subset of supernodes
— If total of x matches found, done
* Otherwise, query further forwarded
— By original supernode

KazZaA-lite

Hacked version of KaZaA client

No spyware, no pop-up windows
Everyone is rated as a priority user
Supernode hopping

— After receiving replies from SN, ON often connects
to a new SN an re-sends query

— SN does not cache hopped-out ON’s metadata

KaZaA: Downloading & Recovery

« If file is found in multiple nodes, user can
select parallel downloading

— Identical copies identified by ContentHash
¢ HTTP byte-range header used to request

different portions of the file from different
nodes

* Automatic recovery when server peer stops
sending file
— ContentHash

KaZaA: Summary

KaZaA provides powerful file search and transfer service
without server infrastructure

Exploit heterogeneity

Provide automatic recovery for interrupted downloads
Powerful, intuitive user interface

Copyright infringement

— International cat-and-mouse game

— With distributed, serverless architecture, can the plug be
pulled?

— Prosecute users?
— Launch DoS attack on supernodes?
— Pollute? (Copyright holder intentionally puts bad copies out)

Searching & Fetching

Query flooding finds:
— An object (filename or hash)
— A host that serves that object

In Query flooding systems, download from
host that answered query

* Generally uses only one source
¢ Can we do better?

2/26/2016

Next Topic...

« Swarming (Fetching)

— BitTorrent

Fetching in Parallel and Swarming

* When you have an object ID,

Get list of peers serving that ID

— Easier than the keyword lookup

— Queries are structured

¢ Download in parallel from multiple peers
* “Swarming”

— Download from others downloading same object
at same time

* Example: BitTorrent

BitTorrent: Swarming

2001, BramCohen debuted BitTorrent
— Was open source, now not (uTorrent)
Key Motivation:
— Popularity exhibits temporal locality (Flash Crowds)
— E.g., Slashdot effect, CNN on 9/11, new movie/game release
Focused on Efficient Fetching, not Searching
— Distribute the same file to all peers
— Single publisher, multiple downloaders
Has some “real” publishers:

— Blizzard Entertainment has used it to distribute beta of games

BitTorrent: Overview

* Swarming:
— Join: contact centralized “tracker” server, get a list of peers
— Publish: Run a tracker server
— Search: Out-of-band
« E.g., use Google to find a tracker for the file you want.

— Fetch: Download chunks of the file from your peers.
Upload chunks you have to them.

* Big differences from Napster:
— Chunk based downloading
— “Few large files” focus
— Anti-freeloading mechanisms

BitTorrent: Overview
|

url
2.6l

tracker

tracks peers
participating in
torrent

+ length @
* name

+ hash

+ url of tracker

10

BitTorrent: Publish/Join

nTracker

AN

22—

2/26/2016

BitTorrent: Fetch

2
-

AN

BitTorrent: Sharing Strategy

* File is broken into pieces
— Typically 256 Kbytes
— Upload pieces while download
* Piece selection
— Select rarest piece for request
— Except at beginning, select random pieces
¢ Employ “Tit-for-tat” sharing strategy
— Ais downloading from some other people
* Awill let the fastest N of those download from him

— Be optimistic: occasionally let freeloaders download
* Otherwise no one would ever start!

 Also allows you to discover better peers to download from when they
reciprocate

BitTorrent: Summary

* Pros

— Works reasonably well in practice

— Gives peers incentive to share resources; avoids
freeloaders

* Cons

— Central tracker server needed to bootstrap swarm
— Tracker is a design choice, not a requirement

« Newer BT variants use a “distributed tracker” - a Distributed Hash
Table

Next Topic...

« Structured Overlay Routing (Both, but mostly search)
— Distributed Hash Tables (DHT)

Directed Searches

* |dea:

— Assign particular nodes to hold particular content (or
pointers to it)

— When node wants that content, go to node that is
supposed to have or know about it
* Challenges:
— Distributed: want to distribute responsibilities among
existing nodes in overlay
— Adaptive: nodes join and leave P2P overlay
« Distribute knowledge responsibility to joining nodes
« Redistribute responsibility knowledge from leaving nodes

11

2/26/2016

Distributed Hash Table (DHT):
Overview

 Abstraction: a distributed “hash-table” data
structure:
— put(id, item);
—item = get(id);
* Implementation: nodes in system form distributed
data structure
—Can be Ring, Tree, Hypercube, ...

DHT: Step 1 —The Hash

* Introduce a hash function to map the object being searched
for to a unique identifier:
— e.g., h(“Led Zepplin”) -> 8045

« Distribute range of hash function among all nodes in
network

10001999

O

0-999

* Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

DHT: “Knowing About Objects”

* Two alternatives
— Node can cache each (existing) object that hashes
within its range
— Pointer-based: level of indirection — node caches
pointer to location(s) of object

ii00-6999

8000-8999 7000-8500

1500-4999

1000-f999 7,\

DHT: Step 2 — Routing

* For each object, node(s) whose range(s) cover
that object must be reachable via “short” path
— by querier node (assumed can be chosen arbitrarily)
— by nodes that have copies of object (when pointer-

based approach is used)

« Different approaches (CAN, Chord, Pastry,
Tapestry) differ fundamentally only in routing
approach
— Any “good” random hash function will suffice

* Each peer only aware of immediate
successor and predecessor.

* “Overlay network”

Example: Circle DHT (2)

O(N) messages 0001
on avg to resolve

query, when there
are N peers

Define closest
as closest
successor

12

Example: Circular DHT with Shortcuts

Who's resp
for key 1110?

[

15

12

10

* Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

¢ Reduced from 6 to 2 messages.

* Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

Example: Peer Churn

*To handle peer churn, require
3 each peer to know IP address
of its two successors.
« Each peer periodically pings its
(L4 two successors to see if still alive

10

8
Peer 5 abruptly leaves

Peer 4 detects; makes 8 its immediate successor;
asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

What if peer 13 wants to join?

DHT: Operations

* Join: On startup, contact “bootstrap” node and integrate into
distributed data structure - get a node id

* Publish: Route publication for file id toward close node id
along data structure (e.g. next in ring)

« Search: Route query for file id toward a close node id

* Fetch: Two options:
— Publication contains actual file = fetch from where query stops

— Publication says “I have file X” = query says 128.2.1.3 has X, use
IP routing to get X from 128.2.1.3

DHT: Discussion

* Pros:

— Guaranteed lookup
— O(log N) per node state and search scope

e Cons:

— Not used

* Academically popular since 2k, but in practice, not so
much

— Supporting non-exact match search is hard
— Churn hard

Peers as Relays

* Problem when both Alice
and Bob are behind “NATs”.
— NAT prevents outside peer
from initiating call to insider
peer (e.g. can’t be server)
* Solution:
— Relay is chosen (based on
connectivity to both)
— Each peer initiates session
with relay
— Peers can now communicate
through NATs via relay

¢ (Used by Skype)

When P2P / DHTs useful?

* Caching and “soft-state” data

— Works well! BitTorrent, KaZaA, etc., all use peers
as caches for hot data

* Finding read-only data

— Limited flooding finds “hay”
— DHTs find “needles”

2/26/2016

13

A Peer-to-peer Google?

e Complex intersection queries (“the” + “who”)
— Billions of hits for each term alone
* Sophisticated ranking

— Must compare many results before returning subset to
user

* Very, very hard for DHT / P2P system
— Need high inter-node bandwidth
— (This is exactly what Google does - massive clusters)

2/26/2016

Writable, Persistent P2P

Do you trust your data to 100,000 monkeys?
Node availability hurts
— Ex: Store 5 copies of data on different nodes

— When someone goes away, you must replicate data they
held

— Hard drives are *huge*, but upload bandwidths relatively
tiny
« Takes many hours to upload contents of hard drive
* Very expensive leave/replication situation!

P2P: Summary

* Many different styles

— Centralized, flooding, swarming, unstructured and structured routing
* Lessons learned:

— Single points of failure are bad
— Flooding messages to everyone is bad

— Underlying network topology is important
— Not all nodes are equal

— Need incentives to discourage freeloading

14

