
2/26/2016

1

Distributed Computing Systems

Peer-to-Peer

Definition of Peer-to-Peer (P2P)

• Significant autonomy from central servers

• Exploits resources at edges of Internet

– Storage and content

– Multicast routing

– CPU cycles

– Human knowledge (e.g., recommendations,
classification)

• Resources at edge may have intermittent
connectivity

P2P Includes

• P2P file sharing
– Napster, gnutella, KaZaA, eDonkey …

• P2P communication
– Instant messaging

– Voice-over-IP (e.g. Skype)

• P2P multicast routing
– Mbone, Yoid, Scattercast

• P2P computation
– seti@home

• P2P apps built on overlays
– PlanetLab

Introduction Outline

• Definition (done)

• Overlay Networks (next)

• P2P Applications

Overlay Networks

• Network on top of another network

Overlay

edge

Overlay Network – Overview

• Virtual edges
– e.g., a TCP connection

– Simpler: an IP address (connection method not specified)

• Creation
– May be structured (e.g., tree) or unstructured (nodes

randomly choose neighbors)

– May or may not take into account proximity of nodes

• Overlay maintenance
– Periodically “ping” to make sure neighbor alive

– Or, verify liveness while sending messages

– If neighbor goes down, may establish new edge

– New node needs to “bootstrap” in

2/26/2016

2

Overlay Networks –

at Application Layer

• Tremendous design flexibility

– Topology, maintenance

– Message types

– Protocol

– Underlying protocol (TCP/UDP)

• Underlying network

transparent

– But some may exploit proximity

(e.g., peers in same ISP)

Examples of Overlays

• Domain Name Service (DNS)

• Border Gateway Protocol (BGP) routers (with

their peering relationships)

• Content Distribution Networks (CDNs)

• Application-level multicast (e.g., Mbone)

• And P2P applications!

Introduction Outline

• Definition (done)

• Overlay Networks (done)

• P2P Applications (next)

P2P File Sharing – General
• Alice runs P2P client on her

laptop

• Intermittently connected

– Gets new IP address each
time

• Registers her content in
P2P system

• Asks for “Hey Jude”

• Application displays other
peers with copy

• Alice choses one, Bob

• File is copied from Bob’s
computer to Alice’s

� P2P

• While Alice downloads,
others upload

P2P File Sharing Capabilities

• Allows Alice to show directory in her file
system

– Anyone can retrieve file from it

– Like Web server

• Allows Alice to copy files from other’s

– Like Web client

• Allows users to search nodes for content
based on keyword matches

– Like search engine (e.g., Google)

Copyright Issues (1 of 2)

Direct Infringement

• End users who download or

upload copyright works

Indirect infringement

• An individual accountable for
actions of others

• Contributory
– Knew of direct infringement

– And caused, induced or
materially contributed to direct
infringement

• Vicarious
– Able to control direct infringers

(e.g. terminate accounts)

– And derived direct financial
benefit

(Knowledge not necessary)

2/26/2016

3

Copyright Issues (2 of 2)

Betamax VCR Defense

• Manufacturer not liable for

contributory infringement

• “Capable of substantial,

non-infringing use”

• But in Napster case, court

found defense does not

apply to all vicarious liability

Guidelines for P2P developers

• Total control so that can be

sure there is no direct

infringement

Or

• No control – no remote kill

switch, no customer support

• Actively promote non-

infringing use of products

• Disaggregate functions

– Indexing, search transfer

Large P2P File Sharing Systems

• Napster
– Disruptive, proof of concept

• Gnutella
– Open source, non-centralized search

• KaZaA/FastTrack
– Surpassed the Web (in terms of bytes)

• eDonkey/Overnet
– Distributed Hash Table (distributed content)

• Is success due to massive number of servers (i.e.,
P2P aspect) or simply because content is “free”?

P2P Communication

• Alice runs IM client on PC

• Intermittently connects to

Internet

– Gets new IP address each

time

• Registers herself with

“system”

• Learns from “system” that

Bob (in her buddy list) is

active

• Alice initiates direct TCP

connection with Bob

�P2P

• Alice and Bob chat

• Can also be voice, video

and text (e.g., Skype)

P2P Distributed Computing:

seti@home

• Search for extra
terrestrial (ET)
intelligence

• Central site collects radio
telescope data

• Data divided into work
chunks (300 Kbytes)

• User obtains client

– Runs in background (when
screensaver on)

• Peer sets up TCP
connection to central
computer

• Downloads chunk

• Peer does FFT on chunk,
uploads results, gets new
chunk

• Not Peer-to-peer, but
exploits resource at
network edge

Outline

• Introduction (done)

• P2P file sharing techniques (next)

• Uses of P2P

• Challenges

P2P Common Primitives

• Join: how to I begin participating?

• Publish: how do I advertise my file?

• Search: how to I find a file?

• Fetch: how to I retrieve a file?

Top 2, relatively easy

Bottom 2, more of challenge

2/26/2016

4

P2P Challenges

• Challenge 1 – Search

– Human’s goals � find file

– Given keywords or human description, find a

specific file

• Challenge 2 – Fetch

– One file determined � get bits

– Computer goal, obtain content

Example: Searching

Internet

N1

N2 N3

N6N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

1000’s of nodes

Set of nodes may change

• Needles versus Haystacks
Searching for top 40 pop song? Or obscure punk track ‘81 nobody’s heard of?

• Search expressiveness
Whole word? Regular expressions? File names? Attributes? Whole-text search?

What’s out there?

Central Flood Super-
node flood

Route

Whole File Napster Gnutella Freenet

Chunk
Based

BitTorrent KaZaA
(bytes, not

chunks)

(DHTs)

eDonkey2k

New BT

Next Topic...

• Centralized Database
– Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Swarming
– BitTorrent

• Structured Overlay Routing
– Distributed Hash Tables

Napster Legacy

• Paradigm shift

• Not the first (probably Eternity, from Ross

Anderson in Cambridge)

– http://www.cl.cam.ac.uk/~rja14/eternity/eternity.html

• But instructive for what it got right

• And wrong…

• Also had an economic message…

• And legal…

Napster: History

• May ‘99: Shawn Fanning
(freshman at Northeastern)
founds Napster

• Dec ‘99: first lawsuit

• Mar ‘00: 25% UWisc traffic
Napster

• Apr ‘01: US Circuit Court of
Appeals: “Napster knew users
violating copyright laws”

• Jul ‘01: # simultaneous online
users
– Napster: 160K, Gnutella: 40K,

Morpheus (KaZaA): 300K

2/26/2016

5

Napster: History

• Jul ’01: Napster

shuts down

– Judge orders

Napster to pull

plug…

• But other file

sharing apps take

over!

Napster: Overiew

• Application-level, client-server protocol over
TCP

• Centralized Database:
– Join: on startup, client contacts central server

– Publish: reports list of files to central server

– Search: query the server � return someone that
stores the requested file

• Selected as best based on “pings”

– Fetch: get the file directly from peer

Centralized

(napster.com)

Napster: Publish

I have X, Y, and Z!

Publish

insert (X, 123.2.21.23)

...

123.2.21.23

Centralized

(napster.com)

Napster: Search

Where is file A?

Query Reply

search(A)
� returns 123.2.0.18
� returns 163.2.1.0

…

Fetch

123.2.0.18

Client “pings” each host,

picks closest

Napster: Discussion

• Pros:

– Simple

– Search scope is O(1)

– Controllable (pro or con?)

• Cons:
– Server maintains O(N) state

– Server does all processing

– Single point of failure

– (Napster’s server farm had difficult time keeping
up with traffic)

Next Topic...

• Centralized Database (Searching)
– Napster

• Query Flooding (Searching)
– Gnutella

• Supernode Query Flooding (Searching)
– KaZaA

• Swarming (Fetching)
– BitTorrent

• Structured Overlay Routing (Both, but mostly search)
– Distributed Hash Tables (DHT)

2/26/2016

6

Query Flooding Overview

• Decentralized method
of searching
– Central server directory

no longer bottleneck
– More difficult to “pull

the plug”

• Each peer:
– Stores selected files
– Routes queries to and

from neighbors
– Responds to queries if

files stored locally
– Serves files

• Join: on startup, client
contacts a few other nodes
– these become its “neighbors”

• Publish: no need

• Search: ask neighbors
(Gnutella uses 7), who ask
their neighbors, and so on...
when/if found, reply to
sender.
– TTL limits propagation (Gnutella

uses 10)

– Reverse path forwards
responses (not files)

• Fetch: get the file directly
from peer

I have file A.

I have file A.

Query Flooding

Where is file A?

Query

Reply

Flooding Discussion

• Pros:
– Fully de-centralized

– Search cost distributed

– Processing @ each node permits powerful search semantics

• Cons:
– Search scope is O(N)

– Search time is O(???) – depends upon “height” of tree

– Nodes leave often, network unstable

• TTL-limited search works well for haystacks
– For scalability, does NOT search every node. May have to re-

issue query later

• Example: Gnutella

Gnutella: History

• Mar ’00: J. Frankel and T. Pepper from
released Gnutella (AOL)

– Immediately withdrawn, but Slashdot-ted

• Became open source

– Good, since initial design was poor

• Soon many other clients: Bearshare,
Morpheus, LimeWire, etc.

• ’01: many protocol enhancements including
“ultrapeers” http://www.computing2010.com/expansions.php?id=07

Gnutella: Discussion

• Researchers like it because it is open source
– But is it representative for research?

• Users’ anecdotal comments: “It stinks”
– Tough to find anything

– Downloads don’t complete

• Fixes
– Hierarchy of nodes

– Queue management

– Parallel downloads

– …

Next Topic...

• Centralized Database (Searching)
– Napster

• Query Flooding (Searching)
– Gnutella

• Supernode Query Flooding (Searching)
– KaZaA

• Swarming (Fetching)
– BitTorrent

• Structured Overlay Routing (Both, but mostly search)
– Distributed Hash Tables (DHT)

2/26/2016

7

Flooding with Supernodes

• Some nodes better
connected, longer
connected than others
– Use them more heavily

• Architecture

– Hierarchical

– Cross between Napster
and Gnutella

• “Smart” Query Flooding

• Join: on startup, client
contacts a “supernode”
– may at some point

become one itself

• Publish: send list of files
to supernode

• Search: send query to
supernode, supernodes
flood query amongst
themselves.

• Fetch: get the file
directly from peer(s)
– can fetch simultaneously

from multiple peers

Stability and Superpeers

• Why superpeers?

– Query consolidation

• Many connected nodes may have only a few files

• Propagating query to sub-node would take more b/w than

answering it yourself

– Caching effect

• Requires network stability

• Superpeer selection is time-based

– How long you’ve been on good predictor of how long you’ll

be around

Supernodes Network Design

“Super Nodes”

Supernodes: Publish

I have X!

Publish

insert(X,

123.2.21.23)
...

123.2.21.23

Supernodes: Search

Where is file A?

Query

search(A)

-->
123.2.0.18

search(A)

-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

Supernodes: Fetch

(And use of hashes…)

• More than one node may have requested file...

• How to tell?

– Must be able to distinguish identical files

– Not necessarily same filename

– Same filename not necessarily same file...

• Use Hash of file

– KaZaA uses UUHash: fast, but not secure

– Alternatives: MD5, SHA-1

• How to fetch?

– Get bytes [0..1000] from A, [1001...2000] from B

2/26/2016

8

Supernode Flooding Discussion

• Pros:

– Tries to take into account node heterogeneity

• Bandwidth

• Host Computational Resources

• Host Availability (?)

– Rumored to take into account network locality

– Scales better

• Cons:

– Still no real guarantees on search scope or search time

• Similar behavior to plain flooding, but better

• Example: KaZaA

KaZaA: History

• In 2001, KaZaA created by Dutch company Kazaa BV

• Single network called FastTrack used by other clients as well

– Morpheus, giFT, etc.

• Eventually protocol changed so other clients could no longer

talk to it

• Most popular file sharing network in 2005 with >10 million

users, sharing over 10,000 terabytes of content (numbers

vary)

– More popular than Napster

– Over 50% of Internet traffic at one time

• MP3s & entire albums, videos, games

KaZaA: The Service

• Optional parallel downloading of files
– User can configure max down and max up

• Automatically switches to new download server when
current server unavailable

• Provides estimated download times

• Queue management at server and client
– Frequent uploaders can get priority

• Keyword search

• Responses to keyword queries come in waves: stops when x
responses are found

• From user’s perspective, resembles Google, but provides
links to mp3s and videos rather than Web

KaZaA: Technology

• Software
– Proprietary

– Control data encrypted

– Everything in HTTP request and response messages

• Each peer a supernode or assigned to a
supernode
– Each SN has about 100-150 children

– Each SN has TCP connections with 30-50 other
supernodes

(Measurement study next slide)

KaZaA Measurement Study KaZaA Measurement Study

• KaZaA is more than

one workload!

– Many files < 10MB (e.g.,

Audio Files)

– Many files > 100MB

(e.g., Movies)

from Gummadi et al., SOSP 2003

2/26/2016

9

KaZaA: Architecture

• Nodes with more connection bandwidth and
more availability � supernodes (SN)

• Each supernode acts as a min-Napster hub
– Tracking content of children (ordinary nodes, ON)

– Maintaining IP addresses of children

• When ON connects to SN, upload metadata
– File name

– File size

– Content hash – used for fetch request, rather than
name

– File descriptions – used for keyword matches

KaZaA: Overlay Maintenance

• List of potential supernodes when download
software

• New peer goes through list until finds
operational supernode

– Connects, contains up-to-date list (200 entries)

– Nodes in list are “close” to ON

– Node pings 5 nodes, connects to one

• If supernode goes down, node obtains
updated list and choses new supernode

KaZaA: Queries

• Node first sends query to supernode

– Supernode responds with matches

– If x matches found, done

• Otherwise, supernode forwards query to

subset of supernodes

– If total of x matches found, done

• Otherwise, query further forwarded

– By original supernode

KaZaA-lite

• Hacked version of KaZaA client

• No spyware, no pop-up windows

• Everyone is rated as a priority user

• Supernode hopping

– After receiving replies from SN, ON often connects

to a new SN an re-sends query

– SN does not cache hopped-out ON’s metadata

KaZaA: Downloading & Recovery

• If file is found in multiple nodes, user can
select parallel downloading

– Identical copies identified by ContentHash

• HTTP byte-range header used to request
different portions of the file from different
nodes

• Automatic recovery when server peer stops
sending file

– ContentHash

KaZaA: Summary

• KaZaA provides powerful file search and transfer service
without server infrastructure

• Exploit heterogeneity

• Provide automatic recovery for interrupted downloads

• Powerful, intuitive user interface

• Copyright infringement
– International cat-and-mouse game

– With distributed, serverless architecture, can the plug be
pulled?

– Prosecute users?

– Launch DoS attack on supernodes?

– Pollute? (Copyright holder intentionally puts bad copies out)

2/26/2016

10

Searching & Fetching

• Query flooding finds:

– An object (filename or hash)

– A host that serves that object

• In Query flooding systems, download from
host that answered query

• Generally uses only one source

• Can we do better?

Next Topic...

• Centralized Database (Searching)
– Napster

• Query Flooding (Searching)
– Gnutella

• Supernode Query Flooding (Searching)
– KaZaA

• Swarming (Fetching)
– BitTorrent

• Structured Overlay Routing (Both, but mostly search)
– Distributed Hash Tables (DHT)

Fetching in Parallel and Swarming

• When you have an object ID,

• Get list of peers serving that ID

– Easier than the keyword lookup

– Queries are structured

• Download in parallel from multiple peers

• “Swarming”

– Download from others downloading same object
at same time

• Example: BitTorrent

BitTorrent: Swarming

• 2001, BramCohen debuted BitTorrent

– Was open source, now not (µTorrent)

• Key Motivation:

– Popularity exhibits temporal locality (Flash Crowds)

– E.g., Slashdot effect, CNN on 9/11, new movie/game release

• Focused on Efficient Fetching, not Searching

– Distribute the same file to all peers

– Single publisher, multiple downloaders

• Has some “real” publishers:

– Blizzard Entertainment has used it to distribute beta of games

BitTorrent: Overview

• Swarming:

– Join: contact centralized “tracker” server, get a list of peers

– Publish: Run a tracker server

– Search: Out-of-band

• E.g., use Google to find a tracker for the file you want.

– Fetch: Download chunks of the file from your peers.
Upload chunks you have to them.

• Big differences from Napster:

– Chunk based downloading

– “Few large files” focus

– Anti-freeloading mechanisms

BitTorrent: Overview

tracks peers

participating in

torrent

2/26/2016

11

BitTorrent: Publish/Join

Tracker

BitTorrent: Fetch

BitTorrent: Sharing Strategy

• File is broken into pieces
– Typically 256 Kbytes

– Upload pieces while download

• Piece selection
– Select rarest piece for request

– Except at beginning, select random pieces

• Employ “Tit-for-tat” sharing strategy
– A is downloading from some other people

• A will let the fastest N of those download from him

– Be optimistic: occasionally let freeloaders download
• Otherwise no one would ever start!

• Also allows you to discover better peers to download from when they
reciprocate

BitTorrent: Summary

• Pros

– Works reasonably well in practice

– Gives peers incentive to share resources; avoids
freeloaders

• Cons

– Central tracker server needed to bootstrap swarm

– Tracker is a design choice, not a requirement

• Newer BT variants use a “distributed tracker” - a Distributed Hash
Table

Next Topic...

• Centralized Database (Searching)
– Napster

• Query Flooding (Searching)
– Gnutella

• Supernode Query Flooding (Searching)
– KaZaA

• Swarming (Fetching)
– BitTorrent

• Structured Overlay Routing (Both, but mostly search)
– Distributed Hash Tables (DHT)

Directed Searches

• Idea:
– Assign particular nodes to hold particular content (or

pointers to it)

– When node wants that content, go to node that is
supposed to have or know about it

• Challenges:
– Distributed: want to distribute responsibilities among

existing nodes in overlay

– Adaptive: nodes join and leave P2P overlay
• Distribute knowledge responsibility to joining nodes

• Redistribute responsibility knowledge from leaving nodes

2/26/2016

12

Distributed Hash Table (DHT):

Overview

• Abstraction: a distributed “hash-table” data

structure:

– put(id, item);

– item = get(id);

• Implementation: nodes in system form distributed

data structure

– Can be Ring, Tree, Hypercube, …

DHT: Step 1 – The Hash
• Introduce a hash function to map the object being searched

for to a unique identifier:
– e.g., h(“Led Zepplin”) → 8045

• Distribute range of hash function among all nodes in
network

• Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

DHT: “Knowing About Objects”

• Two alternatives

– Node can cache each (existing) object that hashes

within its range

– Pointer-based: level of indirection – node caches

pointer to location(s) of object

DHT: Step 2 – Routing

• For each object, node(s) whose range(s) cover

that object must be reachable via “short” path

– by querier node (assumed can be chosen arbitrarily)

– by nodes that have copies of object (when pointer-

based approach is used)

• Different approaches (CAN, Chord, Pastry,

Tapestry) differ fundamentally only in routing

approach

– Any “good” random hash function will suffice

1

3

4

5

8
10

12

15

Example: Circular DHT (1)

• Each peer only aware of immediate
successor and predecessor.

• “Overlay network”

Example: Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp

for key 1110 ?

I am

O(N) messages

on avg to resolve

query, when there

are N peers

1110

1110

1110

1110

1110

1110

Define closest

as closest

successor

2/26/2016

13

Example: Circular DHT with Shortcuts

• Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

• Reduced from 6 to 2 messages.

• Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

1

3

4

5

8
10

12

15

Who’s resp

for key 1110?

Example: Peer Churn

• Peer 5 abruptly leaves

• Peer 4 detects; makes 8 its immediate successor;
asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

• What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require

each peer to know IP address

of its two successors.

• Each peer periodically pings its

two successors to see if still alive

DHT: Operations

• Join: On startup, contact “bootstrap” node and integrate into

distributed data structure � get a node id

• Publish: Route publication for file id toward close node id

along data structure (e.g. next in ring)

• Search: Route query for file id toward a close node id

• Fetch: Two options:

– Publication contains actual file � fetch from where query stops

– Publication says “I have file X” � query says 128.2.1.3 has X, use

IP routing to get X from 128.2.1.3

DHT: Discussion

• Pros:

– Guaranteed lookup

– O(log N) per node state and search scope

• Cons:

– Not used

• Academically popular since 2k, but in practice, not so
much

– Supporting non-exact match search is hard

– Churn hard

Peers as Relays

• Problem when both Alice
and Bob are behind “NATs”.

– NAT prevents outside peer
from initiating call to insider
peer (e.g. can’t be server)

• Solution:

– Relay is chosen (based on
connectivity to both)

– Each peer initiates session
with relay

– Peers can now communicate
through NATs via relay

• (Used by Skype)

When P2P / DHTs useful?

• Caching and “soft-state” data

– Works well! BitTorrent, KaZaA, etc., all use peers

as caches for hot data

• Finding read-only data

– Limited flooding finds “hay”

– DHTs find “needles”

2/26/2016

14

A Peer-to-peer Google?

• Complex intersection queries (“the” + “who”)

– Billions of hits for each term alone

• Sophisticated ranking

– Must compare many results before returning subset to

user

• Very, very hard for DHT / P2P system

– Need high inter-node bandwidth

– (This is exactly what Google does - massive clusters)

Writable, Persistent P2P

• Do you trust your data to 100,000 monkeys?

• Node availability hurts

– Ex: Store 5 copies of data on different nodes

– When someone goes away, you must replicate data they
held

– Hard drives are *huge*, but upload bandwidths relatively
tiny

• Takes many hours to upload contents of hard drive

• Very expensive leave/replication situation!

P2P: Summary

• Many different styles
– Centralized, flooding, swarming, unstructured and structured routing

• Lessons learned:

– Single points of failure are bad

– Flooding messages to everyone is bad

– Underlying network topology is important

– Not all nodes are equal

– Need incentives to discourage freeloading

