
2/23/2016

1

Distributed Computing Systems

Network Games

References / Reading

• [BT01] P. Bettner and M. Terrano. 1500 Archers on a
28.8: Network Programming in Age of Empires and
Beyond,Gamasutra, March 22, 2001

• [SKH02] J. Smed, T. Kaukoranta and H.
Hakonen. Aspects of Networking in Multiplayer
Computer Games, The Electronic Library, Volume 20,
Number 2, Pages 87-97, 2002

• [CFGS14] Mark Claypool, David Finkel, Alexander Grant
and Michael Solano. On the Performance of OnLive
Thin Client Games, Springer Multimedia Systems
Journal (MMSJ) - Special Issue on Network Systems
Support for Games, pages 1-14, February 2014.

Outline

• Synchronization in AoE (next)

• Aspects of Networking

• Cloud Games

Age of Empires – Real Time Strategy

• Build

• Combat

• Explore

Microsoft Studios, 1997

AoE: Multiplayer Design Goals

• Wanted: army on army, large supporting
structure, … (“1500 archers on a …”)

• Support for 8 players

• Smooth simulation over modem, Internet,
LAN

• Target platform: 16 MB P-90, 28.8 modem

• 15 frames per second (one frame every 67 ms)

• Use (existing) Genie engine
– 2d, sprites in 256 colors

– Reasonably stable

AoE in Early Stages

• Engine performance breakdown:
– 30% graphic rendering

– 30% AI

– 30% simulation

• Time to complete each simulation step varied:

– Render time changes with number of units

– When scrolling

– AI computation time varied with units or time

– As much as 200 ms (larger than a frame time!)

• Bandwidth a critical resource:

– Passing (x,y) coordinates, status, action, facing damage … limit
of 250 moving units at most

2/23/2016

2

Simultaneous Simulations

• Each PC ran exact same simulation

– Synchronized game time

– Synchronized random number generators

• Still

– Internet latency from 20 to 1000 milliseconds

– Variable time to process each step

• Needed more responsive approach

Communication Turns

• Separate communications turns from frame rendering

• Schedule commands for later time

– Allows for some variance in network and turn processing

• Turns typically 200 ms in length

– Send all commands entered that turn, but schedule them for 2
turns later

– Process any scheduled turns

The Need for Speed Control

• Since all machines in
“lock step”, can only
run as fast as slowest
machine
– Process

communications,
render turn, send out
new commands

• “Lag” if
– One machine slows

down and others wait

– Delayed or lost Internet
data

Speed Control

• Each client calculates frame rate

– Since varies with game state, use moving average

– Send with “Turn Done” message

– Use to achieve “minimum” frame rate

• Each client measures round-trip “ping” time

– Since varies with Internet traffic, use largest for all players

• After getting “Turn Done” messages

– Adjust target frame rate (based on local PC render rate)

– Adjust communication turn (based on ping-times + remote PC
render rates)

– Weighted, so only “laggy” during worst spikes

• (Examples next)

Speed Control

1) Typical communication turn

2) High latency, normal machine

3) High latency, slow machine

Transport Protocol - UDP

• Unreliable, so each client handles command

ordering, drop detection and re-sending

– “When in doubt, assume it dropped”

• Messages arriving from past turns are discarded

• If out of order message received, request a

resend of supposedly “missing” messages

– Note, if really out of order, will get duplicate so must

account for

• If ack is “late”, then assume lost so resend

2/23/2016

3

Side Benefit – Cheat Prevention

• Simultaneous simulations means games are

identical

• If there is a discrepancy, game stopped

• Prevents cheaters from using hacked client

• But there still could be cheating via

information exposure

Side Problems – Out of Synch

• Subtle, since small errors multiply

– Example – a deer slightly out of alignment, causes
villager to “miss” so no meat, causing different
food amounts

• Checksums (objects, pathing, targeting …), but
always something

– Wade through 50 MB of message traces

“In every project, there is one stubborn bug that goes all the

way to the wire…”

– Microsoft product manager

Outline

• Synchronization in AoE (done)

• Aspects of Networking (next)

• Cloud Games

Network Latency

• Delay when message sent until received
– Variation in delay (delay jitter) also matters

• Cannot be totally eliminated
– e.g., speed of light propagation yields 25-30 ms across Atlantic

– And with routing and queuing, usually 80+ ms

• Application tolerances:
– File download – minutes

– Web page download – up to 10 seconds

– Interactive audio – 100s of ms

• MCG latencies tolerance? � Depends upon game!
– First-Person Shooters – about 100 ms

– Third-Person Adventure – up to 500 ms

– Real-Time Strategy – up to 1 second

– And depends upon action within game! (topic for another paper)

Communication Architectures

Split-screen

- Limited players

All peers equal

-Easy to extend

-Doesn’t scale (LAN

only)

Central server

- Clients only to

server

-Server may be

bottleneck

Server pool

-Improved

scalability

-More

complex

Data and Control Architectures

• Want consistency

– Same state on each node

– Needs tightly coupled, low latency, small nodes

• Want responsiveness

– More computation locally to reduce network

– Loosely coupled (asynchronous)

• In general, cannot do both � Tradeoffs

2/23/2016

4

“Relay” Architecture Abstraction

• Want control to propagate quickly so can update data
(responsiveness)

• Want to reflect same data on all nodes (consistency)

Relay Architecture Choices

(Example: Dumb terminal,

send and wait for response)

(Example: Smart terminal,

send and echo)

MCG Architectures

• Centralized

– Use only two-way relay (no short-circuit)

– One node holds data so view is consistent at all times

– Lacks responsiveness

• Distributed and Replicated

– Allow short-circuit relay

– Replicated has copies, used when predictable (e.g.,
behavior of non-player characters)

– Distributed has local node only, used when
unpredictable (e.g., behavior of players)

Compensatory Techniques

• Architectures alone not enough

• Design to compensate for residual

• Techniques:

– Message aggregation

– Interest management

– Dead reckoning

(next)

Message Aggregation

• Combine multiple messages in one packet to

reduce network overhead

• Examples:

– Multiple user commands to server (move and

shoot)

– Multiple users command to clients (player A’s and

player B’s actions combined to player C)

Interest Management – Auras (1 of 2)

• Nodes express area of interest to them

– Do not get messages for outside areas

- Only circle sent even if

world is larger

- But implementation

complex (squares easier)

2/23/2016

5

Interest Management- Auras (2 of 2)

- Divide into cells (or hexes)

- Easier, but less discriminating

- Compute bounding box

- Relatively easy, precise

• Always symmetric – both receive

– But can sub-divide – focus and nimbus

Interest Management- Focus and

Nimbus

- Nimbus must intersect with focus to receive

- Example above: hider has smaller nimbus, so seeker

cannot see, while hider can see seeker since

seeker’s nimbus intersects hider’s focus

Dead Reckoning

• When prediction differs and adjust, get “warping” or

“rubber-banding” effect

– Some techniques move to place over short time

(predicted position)

(actual position)

(“warp”)

• Based on ocean navigation techniques (“dead” == “deduced (ded.)”)

• Predict position based on last known position plus direction

– Only send updates when deviates past threshold

Serial and Parallel Execution

• Given time T(1), speedup with n nodes

• Part of T(1) must happen serially and part can be done in parallel

Ts + Tp= T(1) and α = Ts/(Ts + Tp)

• If serialized optimally:

(Amdahls’ law)

• If Ts = 0, everything parallelizable but then no communication
(ex: players at own console with no interaction)

• If Tp = 0, then turn based

• Between are MCGs which have some of both

Serial and Parallel MCGs

Separate games

Turn-based

games

Interactive

games

Communication Capacity
• Scalability limited by communication requirements of

chosen architecture

(Multicasting)

• Can consider pool of m servers with n clients

divided evenly amongst them

• Servers in hierarchy have root as bottleneck

• In order not to increase with n, must have clients

not aware of other clients (interest management) and

do message aggregation

2/23/2016

6

Cheating

• Unique to games

– Other multi-person applications don’t have

– In DIS, military not public and considered

trustworthy

• Cheaters want:

– Vandalism – create havoc (relatively few).

• Mostly, game design to prevent (e.g., no friendly fire)

– Dominance – gain advantage (more)

• Next slides

Packet and Traffic Tampering

• Packet interception – prevent some packets from
reaching cheater

– e.g., suppress damage packets, so cheater is
invulnerable

• Packet replay – repeat event over for added
advantage

– e.g., multiple bullets or rockets if otherwise limited

• Solutions:

– MD5 Checksum or Encrypt packets

– Authoritative host keeps within bounds

Packet Tampering

• Reflex augmentation - enhance
cheater’s reactions

– e.g., aiming proxy monitors
opponents movement packets,
when cheater fires, improve aim

• Tough to detect

– E.g., PunkBuster – scan for
“known” hacks

– False positives?

aimbot human

S. Yeung and J. Lui. “Dynamic Bayesian

approach for detecting cheats in multi-

player online games”, Springer Multimedia

Systems, Vol. 14, No. 4 Sep. 2008.

Information Exposure
• Allows cheater to gain access to

replicated, hidden game data (e.g.

status of other players)

– Passive, since does not alter traffic

– e.g., ignore “fog of war” in RTS, or

“wall hack” to see through walls in

FPS

• Cannot be defeated by network alone

• Instead:

– Sensitive data should be encoded

– Kept in hard-to-detect memory

location

– Centralized server may detect

cheating (e.g., attack enemy could

not have seen)

Outline

• Synchronization in AoE (done)

• Aspects of Networking (done)

• Cloud Games (next)

Why Games as a Service?

• Potential scalability

– Overcome processing and storage limitations

• Cross-platform support

– Can run games built for different platforms (e.g., Xbox

and Playstation) on one device

• Piracy prevention

– Since game code is stored in cloud, cannot be copied

• Click-to-play

– Game can be run without installation

2/23/2016

7

Cloud Game Modules (1 of 2)

• Input – receives control

messages from players

• Game logic – manages

game content

• Networking –

exchanges data with

server

• Rendering – renders

game frames

• How do put in cloud?

Cloud Game Modules (2 of 2)

• Cuts

1. All game logic on

player, cloud only

relay information

(traditional network

game)

2. Player only gets input

and displays frames

(remote rendering)

3. Player gets input and

renders frames (local

rendering)

Remote Rendering

• e.g.,
– Onlive (commercial)

– Gaming Anywhere (research)

– Cloud Saucer Shoot (teaching)

• Cloud runs full,
traditional game

• Captures video
(“scrape” screen)
and encode

• Client only needs
capability to
decode and play
– Relatively minor

requirements

• Bitrate
requirements can
be an issue

Local Rendering

• Instead of video
frames, send
display
instructions
– Potentially

great bitrate
savings

• Challenge for
instruction set:
able to
represent all
images for all
games

e.g., Browser-based games (via HTML5

and/or Javascript), [De Winter et al.,

NOSSDAV ‘06]

Potential Distribution of Computing

• Partitioning
coordinator if/when
to migrate
functionality (e.g.,
reduce cloud load
and/or when
terminal has greater
capabilities)
– Remote and Local

rendering cases
(above) are really
just special cases

• Challenge: how to
do so in general,
how to synchronize
if both cloud +
terminal have
module (e.g., “6”) e.g., [Cai et al., CloudCom 2013]

Application Streams vs. Game Streams

• Traditional thin client applications (e.g., x-term,
remote login shell):
– Relatively casual interaction

• e.g., typing or mouse clicking

– Infrequent display updates
• e.g., character updates or scrolling text

• Computer games:
– Intense interaction

• e.g., avatar movement and shooting

– Frequently changing displays
• e.g., 360 degree panning

2/23/2016

8

Motion and Scene Complexity - Summary Downstream Bitrate
Capacity restriction

Capacity affects frame rate

(OnLive recommends 5 Mb/s, but accepts 2 Mb/s)

Predicted Player Performance

(Model based on FPS data with restricted frame rates)

Capacity affects performance

Network Turbulence Summary

Cloud-Game Summary

• Games as service new model for cloud computing

– Choices on distribution of rendering and computation

• Cloud games are like video, but different

– Wider range of motion and scene complexity

• OnLive

– Like video conference down, traditional games up

– Bitrate responds to capacity, but not loss or latency

• Not TCP-Friendly

– Best for players above 5 Mb/s, with 2 Mb/s minimum

• Lower capacities affect player performance

