2/23/2016

Distributed Computing Systems

Network Games

References / Reading

* [BTO1] P. Bettner and M. Terrano. 1500 Archers on a
28.8: Network Programming in Age of Empires and
Beyond,Gamasutra, March 22, 2001

e [SKHO02] J. Smed, T. Kaukoranta and H.

Hakonen. Aspects of Networking in Multiplayer
Computer Games, The Electronic Library, Volume 20,
Number 2, Pages 87-97, 2002

* [CFGS14] Mark Claypool, David Finkel, Alexander Grant
and Michael Solano. On the Performance of OnLive
Thin Client Games, Springer Multimedia Systems
Journal (MMSJ) - Special Issue on Network Systems
Support for Games, pages 1-14, February 2014.

Outline

* Synchronization in AoE (next)
* Aspects of Networking
* Cloud Games

Microsoft Studios, 1997

AoE: Multiplayer Design Goals

* Wanted: army on army, large supporting
structure, ... (“1500 archers on a ...”)

* Support for 8 players

* Smooth simulation over modem, Internet,
LAN

¢ Target platform: 16 MB P-90, 28.8 modem
¢ 15 frames per second (one frame every 67 ms)
« Use (existing) Genie engine

— 2d, sprites in 256 colors

— Reasonably stable

AoE in Early Stages

* Engine performance breakdown:
— 30% graphic rendering
— 30% Al
— 30% simulation
« Time to complete each simulation step varied:
— Render time changes with number of units
— When scrolling
— Al computation time varied with units or time
— As much as 200 ms (larger than a frame time!)
* Bandwidth a critical resource:

— Passing (x,y) coordinates, status, action, facing damage ... limit
of 250 moving units at most

Simultaneous Simulations

« Each PC ran exact same simulation
— Synchronized game time
— Synchronized random number generators
« Still
— Internet latency from 20 to 1000 milliseconds
— Variable time to process each step

* Needed more responsive approach

2/23/2016

Communication Turns

« Separate communications turns from frame rendering
* Schedule commands for later time

— Allows for some variance in network and turn processing
« Turns typically 200 ms in length

— Send all commands entered that turn, but schedule them for 2
turns later

— Process any scheduled turns

1000 1001 1002 1003
current urm

The Need for Speed Control

Since all machines in

“lock step”, can only

run as fast as slowest

machine

— Process
communications,
render turn, send out
new commands

° HLagll if

— One machine slows
down and others wait

— Delayed or lost Internet
data

Speed Control

Each client calculates frame rate
— Since varies with game state, use moving average
— Send with “Turn Done” message
— Use to achieve “minimum” frame rate
« Each client measures round-trip “ping” time
— Since varies with Internet traffic, use largest for all players
* After getting “Turn Done” messages
— Adjust target frame rate (based on local PC render rate)

— Adjust communication turn (based on ping-times + remote PC
render rates)

— Weighted, so only “laggy” during worst spikes
* (Examples next)

Speed Control

Communications turn (200 msec) - scaled to round-rip ping' time estimates

Frame Frame Frame
Frame - scaled tolrendering speed

&0 msec 80 msec &0 msec S0 msec zo7s

‘ Prosess all messages

1) Typical communication turn

Commurications turn (1000 msec) - scaled 1o round-rip ping' tirme estimates

Pracess all
messages

Frame | Frame Frame | Frame | Frame | Frame

Frame ‘ [s1s1e) ‘ Frame ‘ Frame

50 msec 20 frames, 50 msec each 0

2) High latency, normal machine

Communications turn (200 msec) - scaled to round-trip ping' tme estimates

‘ Frocess all messages

Frame
Frame - scaled to rendering speed
100 mzec 100 msec 015

3) High latency, slow machine

Transport Protocol - UDP

Unreliable, so each client handles command
ordering, drop detection and re-sending

— “When in doubt, assume it dropped”

* Messages arriving from past turns are discarded
* |If out of order message received, request a
resend of supposedly “missing” messages

— Note, if really out of order, will get duplicate so must
account for

e If ack is “late”, then assume lost so resend

Side Benefit — Cheat Prevention

¢ Simultaneous simulations means games are
identical

* If there is a discrepancy, game stopped
* Prevents cheaters from using hacked client

¢ But there still could be cheating via
information exposure

2/23/2016

Side Problems — Out of Synch

“In every project, there is one stubborn bug that goes all the
way to the wire...”
— Microsoft product manager

* Subtle, since small errors multiply

— Example — a deer slightly out of alignment, causes
villager to “miss” so no meat, causing different
food amounts

* Checksums (objects, pathing, targeting ...), but
always something

— Wade through 50 MB of message traces

Outline
¢ Synchronization in AoE (done)
* Aspects of Networking (next)

¢ Cloud Games

Network Latency

* Delay when message sent until received
— Variation in delay (delay jitter) also matters
« Cannot be totally eliminated
— e.g., speed of light propagation yields 25-30 ms across Atlantic
— And with routing and queuing, usually 80+ ms
« Application tolerances:
— File download — minutes
— Web page download — up to 10 seconds
— Interactive audio — 100s of ms
* MCG latencies tolerance? = Depends upon game!
— First-Person Shooters —about 100 ms
— Third-Person Adventure —up to 500 ms
— Real-Time Strategy — up to 1 second
— And depends upon action within game! (topic for another paper)

Communication Architectures
N Y

(p
P) \ J {"All peers equal
- " ‘Easy to extend
-Doesn’t scale (LAN
1 iony
A~y
2 J—r)
(C)) (b)
7N /”‘\
{c) [¢
Central server — N~ \/_/ Server pool
- Clients only to \ -Improved
server (s scalability
~Server may be e “More
bottleneck /A\/ &A A\ | complex
c) {c)

Data and Control Architectures

* Want consistency

— Same state on each node

— Needs tightly coupled, low latency, small nodes
* Want responsiveness

— More computation locally to reduce network

— Loosely coupled (asynchronous)
* In general, cannot do both = Tradeoffs

“Relay” Architecture Abstraction

local

global
conrd— L ——
T] network
e

relay

* Want control to propagate quickly so can update data
(responsiveness)

* Want to reflect same data on all nodes (consistency)

2/23/2016

Relay Architecture Choices

i
@ st el 0 vt =S oea)
0\pcal }g—[iglobal Ocar = & yopar)
;(Example: Dumb terminal,
Esend and wait for response)
e] i
(b) Uigcal Y Oglobal ogbbal —ﬂl lml)
Ocal H{ighbal Otocal = g(ighbﬂl) X (i pca)

(Example: Smart terminal,
send and echo)

MCG Architectures

e Centralized

— Use only two-way relay (no short-circuit)
— One node holds data so view is consistent at all times
— Lacks responsiveness
* Distributed and Replicated
— Allow short-circuit relay

— Replicated has copies, used when predictable (e.g.,
behavior of non-player characters)

— Distributed has local node only, used when
unpredictable (e.g., behavior of players)

Compensatory Techniques

* Architectures alone not enough
* Design to compensate for residual
* Techniques:
— Message aggregation
— Interest management
— Dead reckoning
(next)

Message Aggregation

* Combine multiple messages in one packet to
reduce network overhead

¢ Examples:

— Multiple user commands to server (move and
shoot)

— Multiple users command to clients (player A’s and
player B’s actions combined to player C)

Interest Management — Auras (1 of 2)

* Nodes express area of interest to them
— Do not get messages for outside areas

- Only circle sent even if
world is larger
- But implementation
& . complex (squares easier)

2/23/2016

Interest Management- Auras (2 of 2)

L5

- Compute bounding box
- Relatively easy, precise

- Divide into cells (or hexes)
- Easier, but less discriminating

* Always symmetric — both receive
— But can sub-divide — focus and nimbus

Interest Management- Focus and
Nimbus

Hider’s nimbus Seeker’s focus

Secker’s nimbus
- Nimbus must intersect with focus to receive
- Example above: hider has smaller nimbus, so seeker
cannot see, while hider can see seeker since
seeker’s nimbus intersects hider’s focus

Dead Reckoning

Based on ocean navigation techniques (“dead” == “deduced (ded.)")
Predict position based on last known position plus direction
— Only send updates when deviates past threshold

predicted position)

(

¢ When prediction differs and adjust, get “warping” or
“rubber-banding” effect
— Some techniques move to place over short time

Serial and Parallel Execution
T _1
T(n) — n
Part of T(1) must happen serially and part can be done in parallel
T,+T,=T(1)and o0 =T/(T,+ T,)

If serialized optimally:

Given time T(1), speedup with n nodes S(n) =

(Amdahls’ law)
T, + 1, 1 1

SO = T T " et - S a

If T, = 0, everything parallelizable but then no communication
(ex: players at own console with no interaction)

If T, =0, then turn based

Between are MCGs which have some of both

Serial and Parallel MCGs

player 1
player 2 | —— Separate games
player 3 | []
" »
time
player 1 [T
1
player 2 =] Turn-based
- | | games
player 3 [=
H H H H H H time
player 1[I | Interactive
player 2 1] games
player 3 | | EE @ [
{ 1t prmp

Communication Capacity

* Scalability limited by communication requirements of
chosen architecture

Deployment architecture Capacity requirement

Single node 0

Multicasti -
Peer-to-peer g [y op2
Client /server ~n

Peer-to-peer server-network ~ - +m... >+ m?

Hierarchical server-network ~n

« Can consider pool of m servers with n clients
divided evenly amongst them

« Servers in hierarchy have root as bottleneck

« In order not to increase with n, must have clients
not aware of other clients (interest management) and
do message aggregation

Cheating

Unique to games
— Other multi-person applications don’t have
— In DIS, military not public and considered
trustworthy
¢ Cheaters want:
— Vandalism — create havoc (relatively few).
* Mostly, game design to prevent (e.g., no friendly fire)
— Dominance — gain advantage (more)
* Next slides

2/23/2016

Packet and Traffic Tampering

* Packet interception — prevent some packets from
reaching cheater

— e.g., suppress damage packets, so cheater is
invulnerable

* Packet replay — repeat event over for added
advantage
— e.g., multiple bullets or rockets if otherwise limited
* Solutions:
— MD5 Checksum or Encrypt packets
— Authoritative host keeps within bounds

Packet Tampering

* Reflex augmentation - enhance
cheater’s reactions
— e.g., aiming proxy monitors
opponents movement packets,
when cheater fires, improve aim
* Tough to detect

— E.g., PunkBuster — scan for
“known” hacks

— False positives?

. Yeung and J. Lui. “Dynamic Bayesian
approach for detecting cheats in mult-
player online games”, Springer Multimedia
Systems, Vol. 14, No. 4 Sep. 2008

Information Exposure

Allows cheater to gain access to
replicated, hidden game data (e.g.
status of other players)
— Passive, since does not alter traffic
— e.g., ignore “fog of war” in RTS, or
“wall hack” to see through walls in
FPS
Cannot be defeated by network alone
Instead:

— Sensitive data should be encoded

— Kept in hard-to-detect memory
location

— Centralized server may detect
cheating (e.g., attack enemy could
not have seen)

aimbot human
Outline
¢ Synchronization in AoE (done)
¢ Aspects of Networking (done)
¢ Cloud Games (next)

Why Games as a Service?

Potential scalability
— Overcome processing and storage limitations
Cross-platform support

— Can run games built for different platforms (e.g., Xbox
and Playstation) on one device

* Piracy prevention
— Since game code is stored in cloud, cannot be copied
* Click-to-play

— Game can be run without installation

Cloud Game Modules (1 of 2)

Input — receives control
messages from players e

Game logic — manages

game content

Networking —
exchanges data with
server

Rendering — renders
game frames

How do put in cloud?

2/23/2016

Multiplayer Server

@ Newarking Module
D!

Game Logic Module

rensrngronve () -

-
N

Player

Cloud Game Modules (2 of 2)

Cuts
Multiplayer Server

1. Allgame logic on ttee -
player, cloud only
relay information
(traditional network | 7~
game) ‘

2. Player only gets input
and displays frames
(remote rendering) Rendring

3. Player gets input and)
renders frames (local (_ Player
rendering)

() Wetworking Module
0,

Game Logic Module

Remote Rendering

Cloud Terminal

Cloud runs full,

Game Instance

Terminal Display | User Controller

traditional game
c t r d Video Capturer Video Player
aptures video
(“scrape” screen) !
and encode Userpusceoder | Video Encer Videa Decoder | erpusEcater
Client only needs) ¢
capability to Data Flow
decode and play Control Flow

— Relatively minor

requirements
Bitrate
requirements can
be an issue

€.g.

— Onlive (commercial)

— Gaming Anywhere (research)
— Cloud Saucer Shoot (teaching)

Local Rendering

* Instead of video
frames, send Cloud
display .
instructions \

— Potentially I | T I
great bitrate ‘ :
savings)L |

* Challenge for [owarow |
instruction set: Control Flow
able to
represent all
images for all
games

Terminal

Usernpurs Decoder

Display struction

Video Renderer

User Inputs Encoder

e.g., Browser-based games (via HTML5
and/or Javascript), [De Winter et al.,
NOSSDAV ‘06]

Potential Distribution of Computing

Partitioning
coordinator if/when
to migrate
functionality (e.g.,
reduce cloud load
and/or when
terminal has greater
capabilities)
— Remote and Local
rendering cases
(above) are really

Cloud Terminal

Terminal Display | User Controller
T
1

Partitioning Coordinator |+ > Partitioning Coordinator
S EEEEL %
just special cases 1@ ¥ ! &
s | (e . £\
Challenge: how to P WAO St O g j @ &
do so in general, H a H 2

how to synchronize
if both cloud +
terminal have
module (e.g., “6”)

e.g., [Cai etal., CloudCom 2013]

Application Streams vs. Game Streams

* Traditional thin client applications (e.g., x-term,
remote login shell):
— Relatively casual interaction
* e.g., typing or mouse clicking
— Infrequent display updates
* e.g., character updates or scrolling text
* Computer games:
— Intense interaction
* e.g., avatar movement and shooting
— Frequently changing displays
* e.g., 360 degree panning

Motion and Scene Complexity - Summary

Py
£ & ™
£ / b
i B
: Omnipresent |
1
oy b]
E \ o
E‘ £ s ‘? Third Person,
=} E ,'I | Linear \
B / \ & Y
4 i \
g I!ThirdPersnn. Wioeo L \
2 i Isometric S |
122] \.\ B 7 |
. N {SEE |
. N
3 R -
low medium high
Motion

2/23/2016

Frame Rate (f/s)

Downstream Bitrate

Capacity restriction

Capacity (Mb/s)

10987654321123456780910

A0

t |
fi MJ W%J"r”d

{Jn

¥ o
ihy] b

Time (seconds)

150

Frame Rate ({/s)

Capacity (Mbls)

5 6 7 8 9 10

| Capacity affects frame rate
i (OnLive recommends 5 Mb/s, but accepts 2 Mb/s)

Predicted Player Performance

ATE |
]
8
3
0.8
@
3
2
8
€ o6
L
)
a
304
°
B prediction point 4
a 02 037 IN(X) + 0.2 sesressunes
4
g
0
0 2 4 6 8 10

Capacity (Mb/s)

i (Model based on FPS data with restricted frame rates)
: Capacity affects performance

Network Turbulence Summary

Application Bitrate Pkt size Inter-Pkt
(kb/s) (bytes) (ms)

Traditional game 67 75 45

Virtual environment 795 1,027 9

Live video 2,222 1,314 0.1

Thin Game 6,247 1,203 0.7

Pre-recorded Video 43,914 1,514 0.1

Cloud-Game Summary

Games as service new model for cloud computing
— Choices on distribution of rendering and computation
Cloud games are like video, but different
— Wider range of motion and scene complexity
OnlLive
— Like video conference down, traditional games up
— Bitrate responds to capacity, but not loss or latency
* Not TCP-Friendly
— Best for players above 5 Mb/s, with 2 Mb/s minimum
 Lower capacities affect player performance

