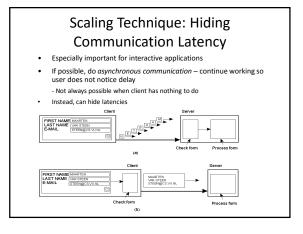
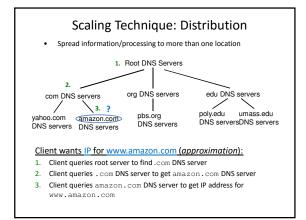


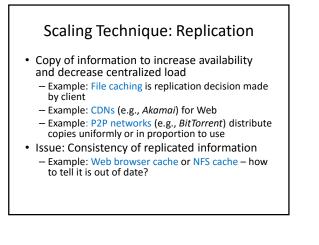
But this brings new requirements

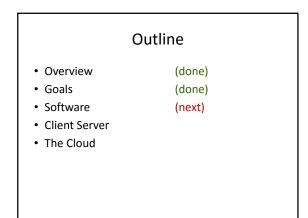
- A way to express problem as parallel processes and execute them on different machines (Programming Models and Concurrency).
- A way for processes on different machines to exchange information (Communication).
- A way for processes to cooperate with one another and agree on shared values (Synchronization).
- A way to enhance reliability and improve performance (Consistency and Replication).
- A way to recover from partial failures (Fault Tolerance).
- A way to protect communication and ensure that process gets only those access rights it is entitled to (Security).
- A way to extend interfaces so as to mimic behavior of another system, reduce diversity of platforms, and provide high degree of portability and flexibility (Virtualization)

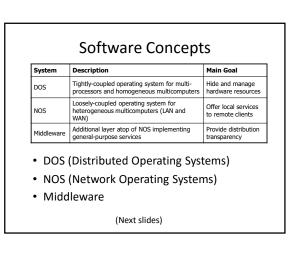
	Outline
 Overview Goals Software Client Server The Cloud 	(done) (next)

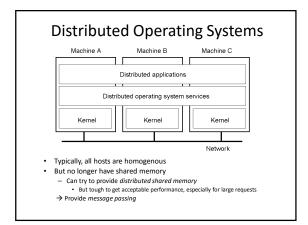

	Goal - Transparency
Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Hide that a resource may be copied
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource
Persistence	Hide whether a (software) resource is in memory or on disk

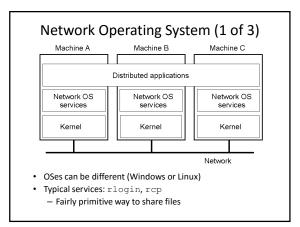

Goal - Scalability

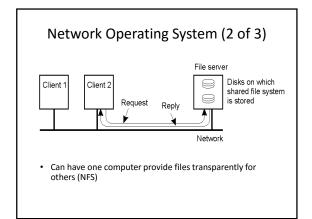

As systems grow, centralized solutions are limited
 – Consider LAN name resolution (ARP) vs. WAN

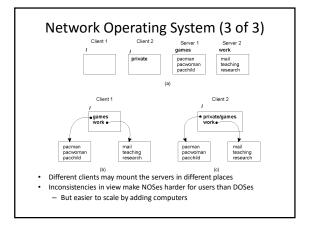

Concept	Example
Centralized services	A single server for all users
Centralized data	A single on-line telephone book
Centralized algorithms	Doing routing based on complete information

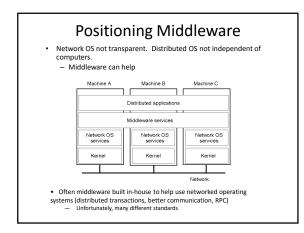

- Ideally, collect information in distributed fashion and distribute in distributed fashion
- But sometimes, hard to avoid (e.g., consider money in bank)
 Challenges: geography, ownership domains, time synchronization
- Scaling techniques? → Hiding latency, distribution, replication (next)

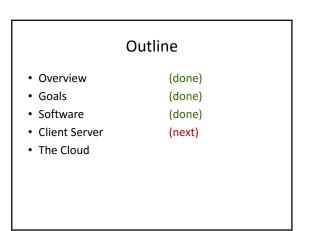


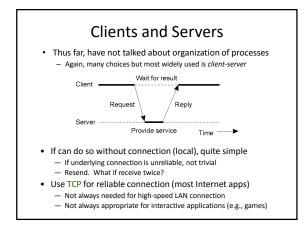


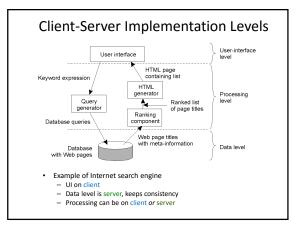


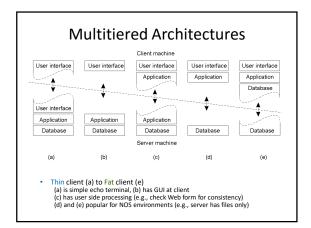


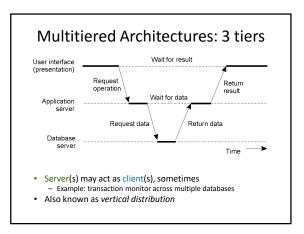


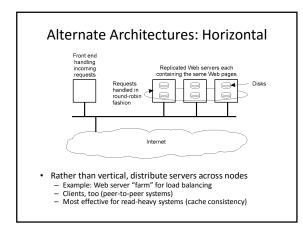


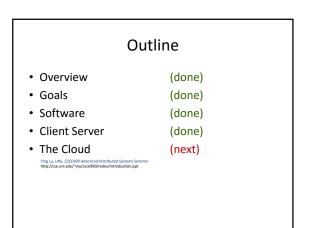


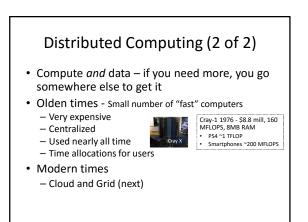


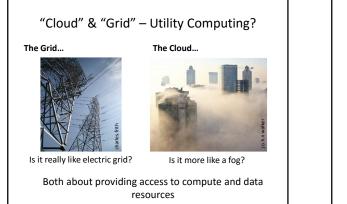


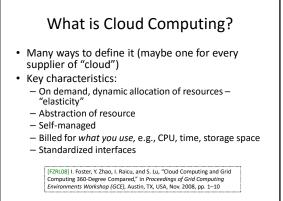


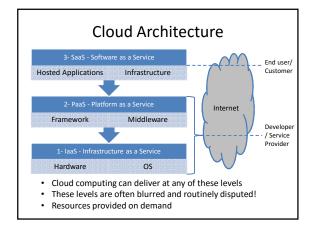


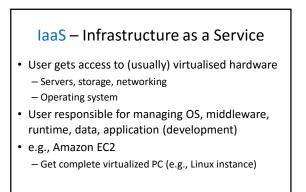







Distributed Computing (1 of 2)


- The Problem
 - Want to run compute/data intensive task
 - But don't have enough resources to run job locally
 At least, to get results within sensible timeframe
 - Would like to use another, more capable resource
- Solution \rightarrow Distributed Computing



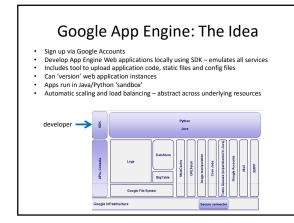
Amazon EC2 – The Idea

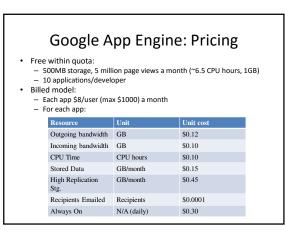
- EC stands for Elastic Computing
- Sign up, then select & configure virtualized resources
 - Machine (OS): Windows Server, OpenSolaris, Fedora, Ubuntu, Debian, SUSE, Gentoo, Amazon Linux AMI
 - Data: IBM DB2, IBM Informix, Microsoft SQL, MySQL, Oracle
 - Web Hosting: Apache HTTP, IIS/Asp.NET, IBM WebSphere
 Batch Processing: Hadoop, Condor, Open MPI
 - Newer addition development environments: IBM sMash, Ruby on Rails, Jboss Enterprise Application Platform
 - Moving towards platform service (PaaS)! (Already there?)
- Additional Web services
- S3: Simple Storage Solution transfer data in/out, 1 byte to 5 TB (e.g., DropBox)
- SQS: Simple Queue Service transfer between cloud components

Amazon EC2: Pricing

• Free! (at start):

- Run single Amazon Micro Instance for year
- 15 GB bandwidth in/out across all services
- On demand instances:
- Pay per hour, no long-term commitment
 From \$0.025/hour → \$0.76/hour
- Reserved instances:
- Upfront payment, with discount per hour
 From \$227/year + \$0.01/hour → \$1820/year + \$0.32/hour Spot instances:


- Bid for unused EC2 capacity:
 Spot price fluctuates with supply/demand, if bid over Spot Price, you get it
- From \$0.007/hour → \$0.68/hour

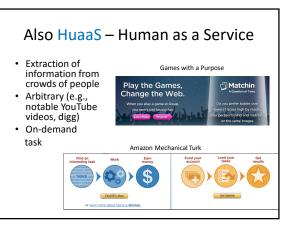

EC2 Application Examples

- Peter Harkins (Senior Engineer at The Washington Post)
 - 200 EC2 instances (1,407 server hours)
 - Convert 17,481 pages of Clinton's travel docs within 9 hours after release
- Airbnb
 - 200 EC2 instances
 - 50 BG data daily, S3 for storage (10 TB user pictures)
- Others
 - Zynga, Netflix, Adobe
 - Case studies: http://aws.amazon.com/solutions/case-studies

PaaS – Platform as a Service

- Integrated development environment e.g., application design, testing, deployment,
 - hosting, frameworks for database integration, storage, app versioning, etc.
- Develop applications on top
- Responsible for managing data, application (development)
- Example Google App Engine

SaaS – Software as a Service


- Top layer consumed directly by end user the 'business' functionality
- Application software provided, you configure it (more or less) Various levels of maturity: – Level 1: each customer has own customised version of application in own instance
 - Level 2: all instances use same application code, but configured individually
 - Level 3: single instance of application across all customers
 - Level 4: multiple customers served on load-balanced 'farm' of identical instances
 Levels 3 & 4: separate customer data! (Somewhat similar to PaaS)
- e.g. Gmail, Google Sites, Google Docs, Facebook

Summary of Provision

	Packaged Software	I	nfrastructur (as a Service)	e	Platform (as a Service)		Software (as a Service)	
	Applications		Applications	inage	Applications		Applications	
	Data	nage	Data	You manage	Data		Data	
	Runtime	fou manage	Runtime	-	Runtime		Runtime	z
ge	Middleware		Middleware		Middleware	z	Middleware	Managed by vendor
manage	O/5		O/S		O/S	Managed by	O/S	ed by v
	Virtualization		Virtualization	Managed	Virtualization	ed by 1	Virtualization	/endo
	Servers		Servers	aged	Servers	vendo	Servers	7
	Storage		Storage	by vendor	Storage		Storage	
	Networking		Networking	dor	Networking		Networking	

Cloud Open Standards

- · Implementations typically have proprietary standards and interfaces - Vendors like this - often locked into one implementation
- Community 'push' towards open cloud standards: - Open Grid Forum (OGF) - Open Cloud Computing Interface (OCCI)
 - Distributed Management Task Force (DMTF) Open Virtualisation Format (OVF)

Where to Apply Distributed Systems				
Application Domain	Associated Networked Application			
Finance and commerce	E-commerce (e.g., Amazon and eBay, PayPal), online banking and trading			
The information society	Web information and search engines, e-books, Wikipedia; social networking: Facebook and Instagram, Twitter.			
Creative industries and entertainment	Online gaming, music and film in the home, user- generated content, e.g. YouTube, Flickr			
Healthcare	Health informatics, on online patient records, monitoring patients			
Education	E-learning, virtual learning environments; distance learning			
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth			
Science	The Grid as an enabling technology for collaboration between scientists			
Environmental management	Sensor technology to monitor earthquakes, floods or tsunamis			

Application Domain	Associated Networked Application
Finance and commerce	E-commerce (e.g., Amazon and eBay, PayPal), online banking and trading
The information society	Web information and search engines, e-books, Wikipedia; social networking: Facebook and Instagram, Twitter.
Creative industries and entertainment	Online gaming, music and film in the home, user generated content, e.g. YouTube, Flickr
Healthcare	Health informatics, on online patient records, monitoring patients
Education	E-learning, virtual learning environments; distance learning
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth
Science	The Grid as an enabling technology for collaboration between scientists
Environmental management	Sensor technology to monitor earthquakes, floor