
2/19/2016

1

Distributed Computing Systems

Overview of Distributed Systems

Andrew Tanenbaum and Marten van Steen, Distributed Systems – Principles and Paradigms, Prentice Hall, c2002.

The Rise of Distributed Systems

• Computer hardware prices falling, power increasing

– If cars did same, Rolls Royce would cost 1 dollar and get 1 billion

miles per gallon (with 200 page manual to open door)

• Network connectivity increasing

– Everyone is connected with “fat” pipes, even when moving

• It is easy to connect hardware together

– Layered abstractions have worked very well

• Definition: a distributed system is

“A collection of independent computers that appears to its users as

a single coherent system”

Why Distributed Systems?

A. Big data continues to grow:

� In mid-2010, information universe 1.2 zettabytes

� 2020 predictions 44x more at 35 zettabytes

B. Applications are becoming data-intensive.

- Big data - large pools of data

captured, communicated,

aggregated, stored, and

analyzed

- Google processes 20

petabytes of data per day

- E.g., data-intensive app:

astronomical data parsing

Ying Lu, UNL, CSCE990 Advanced Distributed Systems Seminar

http://cse.unl.edu/~ylu/csce990/notes/Introduction.ppt

Why Distributed Systems?

C. Individual computers have limited resources compared to scale of current

problems & application domains:

1. Caches and Memory:

L1

Cache

L2 Cache

L3 Cache

Main Memory

16KB- 64KB, 2-4 cycles

512KB- 8MB, 6-15 cycles

4MB- 32MB, 30-50 cycles

2GB- 16GB, 300+ cycles

1-5 TB, 3 billion+ cyclesHard Drive

Why Distributed Systems?

P

L1

L2

P

L1

L2 Cache

P

L1

P

L1

P

L1

Interconnect

2. Processor:

� Number of transistors integrated on single die has continued to grow

at Moore’s pace

� Chip Multiprocessors (CMPs) are now available

A single Processor Chip

A CMP

Why Distributed Systems?

3. Processor (continued):

� CPU speed grows at rate of 55% annually, but mem speed grew only 7%

Memory

Memory

P

M

P

L1

L2

P

L1

L2 Cache

P

L1

P

L1

P

L1

Interconnect

Processor-Memory speed gap

2/19/2016

2

Why Distributed Systems?

� Even if 100s or 1000s of cores are placed on CMP, challenge to deliver

stored data to cores fast enough for processing

A Data Set

of 4 TBs

4 100MB/S IO Channels

10000

seconds (or

3 hours) to

load data

Memory

P

L1

L2 Cache

P

L1

P

L1

P

L1

Interconnect

Why Distributed Systems?

Only 3

minutes to

load data

A Data Set (data)

of 4 TBs

Splits

Memory

P

L1

L2

Memory

P

L1

L2

100

Machines

Distributed systems to the rescue!

But this brings new requirements
� A way to express problem as parallel processes and execute them

on different machines (Programming Models and Concurrency).

� A way for processes on different machines to exchange information

(Communication).

� A way for processes to cooperate with one another and agree on

shared values (Synchronization).

� A way to enhance reliability and improve performance (Consistency

and Replication).

� A way to recover from partial failures (Fault Tolerance).

� A way to protect communication and ensure that process gets only

those access rights it is entitled to (Security).

� A way to extend interfaces so as to mimic behavior of another

system, reduce diversity of platforms, and provide high degree of

portability and flexibility (Virtualization)

Depiction of a Distributed System

• Distributed system organized as middleware. Note middleware layer extends over

multiple machines.

• Users can interact with system in consistent way, regardless of where interaction

takes place (e.g., RPC, memcached, …

• Note: Middleware may be “part” of application in practice

Examples:
- The Web

- Processor pool

- Shared memory pool

- Airline reservation

- Network game

- The Cloud

Outline

• Overview (done)

• Goals (next)

• Software

• Client Server

• The Cloud

Goal - Transparency

(Different forms of transparency in distributed system)

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource may be copied

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

2/19/2016

3

Goal - Scalability
• As systems grow, centralized solutions are limited

– Consider LAN name resolution (ARP) vs. WAN

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms
Doing routing based on complete

information

• Ideally, collect information in distributed fashion and distribute in
distributed fashion

• But sometimes, hard to avoid (e.g., consider money in bank)

• Challenges: geography, ownership domains, time synchronization

• Scaling techniques? � Hiding latency, distribution, replication (next)

Scaling Technique: Hiding

Communication Latency
• Especially important for interactive applications

• If possible, do asynchronous communication – continue working so
user does not notice delay

- Not always possible when client has nothing to do

• Instead, can hide latencies

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Scaling Technique: Distribution

Client wants IP for www.amazon.com (approximation):

1. Client queries root server to find .com DNS server

2. Client queries .com DNS server to get amazon.com DNS server

3. Client queries amazon.com DNS server to get IP address for

www.amazon.com

?

1.

2.

3.

• Spread information/processing to more than one location
Scaling Technique: Replication

• Copy of information to increase availability
and decrease centralized load
– Example: File caching is replication decision made

by client

– Example: CDNs (e.g., Akamai) for Web

– Example: P2P networks (e.g., BitTorrent) distribute
copies uniformly or in proportion to use

• Issue: Consistency of replicated information
– Example: Web browser cache or NFS cache – how

to tell it is out of date?

Outline

• Overview (done)

• Goals (done)

• Software (next)

• Client Server

• The Cloud

Software Concepts

• DOS (Distributed Operating Systems)

• NOS (Network Operating Systems)

• Middleware

System Description Main Goal

DOS
Tightly-coupled operating system for multi-
processors and homogeneous multicomputers

Hide and manage
hardware resources

NOS
Loosely-coupled operating system for
heterogeneous multicomputers (LAN and
WAN)

Offer local services
to remote clients

Middleware
Additional layer atop of NOS implementing
general-purpose services

Provide distribution
transparency

(Next slides)

2/19/2016

4

Distributed Operating Systems

• Typically, all hosts are homogenous

• But no longer have shared memory

– Can try to provide distributed shared memory

• But tough to get acceptable performance, especially for large requests

� Provide message passing

Network Operating System (1 of 3)

• OSes can be different (Windows or Linux)

• Typical services: rlogin, rcp

– Fairly primitive way to share files

Network Operating System (2 of 3)

• Can have one computer provide files transparently for
others (NFS)

Network Operating System (3 of 3)

• Different clients may mount the servers in different places

• Inconsistencies in view make NOSes harder for users than DOSes

– But easier to scale by adding computers

Positioning Middleware
• Network OS not transparent. Distributed OS not independent of

computers.

– Middleware can help

• Often middleware built in-house to help use networked operating

systems (distributed transactions, better communication, RPC)
― Unfortunately, many different standards

Outline

• Overview (done)

• Goals (done)

• Software (done)

• Client Server (next)

• The Cloud

2/19/2016

5

Clients and Servers
• Thus far, have not talked about organization of processes

– Again, many choices but most widely used is client-server

• If can do so without connection (local), quite simple
― If underlying connection is unreliable, not trivial

― Resend. What if receive twice?

• Use TCP for reliable connection (most Internet apps)
― Not always needed for high-speed LAN connection

― Not always appropriate for interactive applications (e.g., games)

Client-Server Implementation Levels

• Example of Internet search engine

– UI on client

– Data level is server, keeps consistency

– Processing can be on client or server

Multitiered Architectures

• Thin client (a) to Fat client (e)
(a) is simple echo terminal, (b) has GUI at client
(c) has user side processing (e.g., check Web form for consistency)
(d) and (e) popular for NOS environments (e.g., server has files only)

Multitiered Architectures: 3 tiers

• Server(s) may act as client(s), sometimes
– Example: transaction monitor across multiple databases

• Also known as vertical distribution

Alternate Architectures: Horizontal

• Rather than vertical, distribute servers across nodes
– Example: Web server “farm” for load balancing
– Clients, too (peer-to-peer systems)
– Most effective for read-heavy systems (cache consistency)

Outline

• Overview (done)

• Goals (done)

• Software (done)

• Client Server (done)

• The Cloud (next)
Ying Lu, UNL, CSCE990 Advanced Distributed Systems Seminar

http://cse.unl.edu/~ylu/csce990/notes/Introduction.ppt

2/19/2016

6

Distributed Computing (1 of 2)

• The Problem

– Want to run compute/data intensive task

– But don’t have enough resources to run job locally

• At least, to get results within sensible timeframe

– Would like to use another, more capable resource

• Solution � Distributed Computing

LocalLocal

InstitutionalInstitutional

NationalNational InternationalInternational

Images: nasaimages, Extra Ketchup, Google Maps, Dave Page

Distributed Computing (2 of 2)

• Compute and data – if you need more, you go
somewhere else to get it

• Olden times - Small number of “fast” computers

– Very expensive

– Centralized

– Used nearly all time

– Time allocations for users

• Modern times

– Cloud and Grid (next)

Cray-1 1976 - $8.8 mill, 160
MFLOPS, 8MB RAM

• PS4 ~1 TFLOP

• Smartphones ~200 MFLOPSb
re

w
b

o
o

ks

Cray X

“Cloud” & “Grid” – Utility Computing?

The Grid… The Cloud…

Is it really like electric grid? Is it more like a fog?

Both about providing access to compute and data

resources

j.
o

.h
.n

w
a

lk
e

r

ch
a

rl
e

s.
fr

it
h

What is Cloud Computing?

• Many ways to define it (maybe one for every
supplier of “cloud”)

• Key characteristics:
– On demand, dynamic allocation of resources –

“elasticity”

– Abstraction of resource

– Self-managed

– Billed for what you use, e.g., CPU, time, storage space

– Standardized interfaces

[FZRL08] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid

Computing 360-Degree Compared,” in Proceedings of Grid Computing

Environments Workshop (GCE), Austin, TX, USA, Nov. 2008, pp. 1–10

Internet

Cloud Architecture

1- IaaS - Infrastructure as a Service

Hardware OS

2- PaaS - Platform as a Service

Framework Middleware

3- SaaS - Software as a Service

Hosted Applications Infrastructure

• Cloud computing can deliver at any of these levels

• These levels are often blurred and routinely disputed!

• Resources provided on demand

End user/

Customer

Developer

/ Service

Provider

IaaS – Infrastructure as a Service

• User gets access to (usually) virtualised hardware

– Servers, storage, networking

– Operating system

• User responsible for managing OS, middleware,

runtime, data, application (development)

• e.g., Amazon EC2

– Get complete virtualized PC (e.g., Linux instance)

2/19/2016

7

Amazon EC2 – The Idea

• EC stands for Elastic Computing

• Sign up, then select & configure virtualized resources
– Machine (OS): Windows Server, OpenSolaris, Fedora, Ubuntu, Debian,

SUSE, Gentoo, Amazon Linux AMI

– Infrastructure:
• Data: IBM DB2, IBM Informix, Microsoft SQL, MySQL, Oracle

• Web Hosting: Apache HTTP, IIS/Asp.NET, IBM WebSphere

• Batch Processing: Hadoop, Condor, Open MPI

– Newer addition - development environments:
• IBM sMash, Ruby on Rails, Jboss Enterprise Application Platform

– Moving towards platform service (PaaS)! (Already there?)

• Additional Web services
– S3: Simple Storage Solution – transfer data in/out, 1 byte to 5 TB (e.g.,

DropBox)

– SQS: Simple Queue Service – transfer between cloud components

Amazon EC2: Pricing

• Free! (at start):
– Run single Amazon Micro Instance for year
– 750 hours of EC2, 750 hours of Elastic Load Balancing plus 15 GB data

processing
– 15 GB bandwidth in/out across all services

• On demand instances:
– Pay per hour, no long-term commitment
– From $0.025/hour � $0.76/hour

• Reserved instances:
– Upfront payment, with discount per hour
– From $227/year + $0.01/hour � $1820/year + $0.32/hour

• Spot instances:
– Bid for unused EC2 capacity:
– Spot price fluctuates with supply/demand, if bid over Spot Price, you

get it
– From $0.007/hour � $0.68/hour

EC2 Application Examples

• Peter Harkins (Senior Engineer at The Washington
Post)

– 200 EC2 instances (1,407 server hours)

– Convert 17,481 pages of Clinton’s travel docs within 9
hours after release

• Airbnb

– 200 EC2 instances

– 50 BG data daily, S3 for storage (10 TB user pictures)

• Others

– Zynga, Netflix, Adobe

Case studies: http://aws.amazon.com/solutions/case-studies

PaaS – Platform as a Service

• Integrated development environment
– e.g., application design, testing, deployment,

hosting, frameworks for database integration,
storage, app versioning, etc.

• Develop applications on top

• Responsible for managing data, application
(development)

• Example - Google App Engine

Google App Engine: The Idea
• Sign up via Google Accounts

• Develop App Engine Web applications locally using SDK – emulates all services

• Includes tool to upload application code, static files and config files

• Can ‘version’ web application instances

• Apps run in Java/Python ‘sandbox’

• Automatic scaling and load balancing – abstract across underlying resources

developer

Google App Engine: Pricing
• Free within quota:

– 500MB storage, 5 million page views a month (~6.5 CPU hours, 1GB)

– 10 applications/developer

• Billed model:
– Each app $8/user (max $1000) a month

– For each app:

Resource Unit Unit cost

Outgoing bandwidth GB $0.12

Incoming bandwidth GB $0.10

CPU Time CPU hours $0.10

Stored Data GB/month $0.15

High Replication

Stg.

GB/month $0.45

Recipients Emailed Recipients $0.0001

Always On N/A (daily) $0.30

2/19/2016

8

SaaS – Software as a Service

• Top layer consumed directly by end user – the ‘business’
functionality

• Application software provided, you configure it (more or less)

• Various levels of maturity:
– Level 1: each customer has own customised version of application in

own instance

– Level 2: all instances use same application code, but configured
individually

– Level 3: single instance of application across all customers

– Level 4: multiple customers served on load-balanced ‘farm’ of
identical instances

– Levels 3 & 4: separate customer data! (Somewhat similar to PaaS)

• e.g. Gmail, Google Sites, Google Docs, Facebook

Summary of Provision

Application Migration – adopt level needed

Cloud Open Standards

• Implementations typically have proprietary
standards and interfaces
– Vendors like this – often locked into one implementation

• Community ‘push’ towards open cloud standards:
– Open Grid Forum (OGF) – Open Cloud Computing

Interface (OCCI)

– Distributed Management Task Force (DMTF) – Open
Virtualisation Format (OVF)

Also HuaaS – Human as a Service

• Extraction of
information from
crowds of people

• Arbitrary (e.g.,
notable YouTube
videos, digg)

• On-demand

task
Amazon Mechanical Turk

Games with a Purpose

Where to Apply Distributed Systems
Application Domain Associated Networked Application

Finance and commerce E-commerce (e.g., Amazon and eBay, PayPal),

online banking and trading

The information society Web information and search engines, e-books,

Wikipedia; social networking: Facebook and

Instagram, Twitter.

Creative industries and entertainment Online gaming, music and film in the home, user-

generated content, e.g. YouTube, Flickr

Healthcare Health informatics, on online patient records,

monitoring patients

Education E-learning, virtual learning environments;

distance learning

Transport and logistics GPS in route finding systems, map services:

Google Maps, Google Earth

Science The Grid as an enabling technology for

collaboration between scientists

Environmental management Sensor technology to monitor earthquakes, floods

or tsunamis

