
2/12/2016

1

Distributed Computing Systems

Distributed File Systems

Distributed File Systems

• Early networking and files
– Had FTP to transfer files

– Telnet to remote login to other systems with files

• But want more transparency!
– local computing with remote file system

• Distributed file systems � One of earliest distributed
system components

• Enables programs to access remote files as if local
– Transparency

• Allows sharing of data and programs

• Performance and reliability comparable to local disk

Outline

• Overview (done)

• Basic principles (next)

– Concepts

– Models

• Network File System (NFS)

• Andrew File System (AFS)

• Dropbox

Concepts of Distributed File System

• Transparency

• Concurrent Updates

• Replication

• Fault Tolerance

• Consistency

• Platform Independence

• Security

• Efficiency

Transparency

Illusion that local/remote files are similar.
Includes:
• Access transparency — a single set of

operations. Clients that work on local files
can work with remote files.

• Location transparency — clients see a
uniform name space. Relocate without
changing path names.

• Mobility transparency — files can be moved
without modifying programs or changing
system tables

• Performance transparency — within limits,
local and remote file access meet
performance standards

• Scaling transparency —increased loads do
not degrade performance significantly.
Capacity can be expanded.

5

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

Concurrent Updates

• Changes to file from one client

should not interfere with

changes from other clients

– Even if changes at same time

• Solutions often include:

– File or record-level locking

6

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

2/12/2016

2

Replication

• File may have several copies of its
data at different locations
– Often for performance reasons

– Requires update other copies when
one copy is changed

• Simple solution
– Change master copy and periodically

refresh other copies

• More complicated solution
– Multiple copies can be updated

independently at same time needs
finer grained refresh and/or merge

7

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

8

Fault Tolerance

• Function when clients or servers
fail

• Detect, report, and correct faults
that occur

• Solutions often include:
– Redundant copies of data,

redundant hardware, backups,
transaction logs and other
measures

– Stateless servers

– Idempotent operations

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

Consistency

• Data must always be complete,
current, and correct

• File seen by one process looks
the same for all processes
accessing

• Consistency special concern
whenever data is duplicated

• Solutions often include:

– Timestamps and ownership
information

9

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

10

Platform Independence

• Access even though hardware

and OS completely different in

design, architecture and

functioning, from different

vendors

• Solutions often include:

– Well-defined way for clients to

communicate with servers

(protocol)

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

11

Security

• File systems must be protected

against unauthorized access,

data corruption, loss and other

threats

• Solutions include:

– Access control mechanisms

(ownership, permissions)

– Encryption of commands or

data to prevent “sniffing”

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

Efficiency

• Overall, want same power
and generality as local file
systems

• Early days, goal was to
share “expensive” resource
� the disk

• Now, allow convenient
access to remotely stored
files

12

Transparency

Concurrent Updates

Replication

Fault Tolerance

Consistency

Platform Independence

Security

Efficiency

2/12/2016

3

Outline

• Overview (done)

• Basic principles (next)

– Concepts

– Models

• Network File System (NFS)

• Andrew File System (AFS)

• Dropbox

File Service Models

Upload/Download Model

• Read file: copy file from server
to client

• Write file: copy file from client
to server

• Good
– Simple

• Bad
– Wasteful – what if client only

needs small piece?

– Problematic – what if client
doesn’t have enough space?

– Consistency – what if others
need to modify file?

Remote Access Model

• File service provides functional
interface

– Create, delete, read bytes, write
bytes, …

• Good

– Client only gets what’s needed

– Server can manage coherent view
of file system

• Bad

– Possible server and network
congestion

• Servers used for duration of access

• Same data may be requested
repeatedly

Semantics of File Service

Sequential Semantics

Read returns result of last write

• Easily achieved if

– Only one server

– Clients do not cache data

• But

– Performance problems if no
cache

– Can instead write-through

• Must notify clients holding
copies

• Requires extra state, generates
extra traffic

Session Semantics

Relax sequential rules

• Changes to open file are

initially visible only to

process that modified it

• Last process to modify file

“wins”

• Can hide or lock file under

modification from other

clients

Accessing Remote Files (1 of 2)

• For transparency, implement client as module

under Virtual File System (VFS)

(Additional picture next slide)

Accessing Remote Files (2 of 2)

Virtual file system allows for transparency

Stateful or Stateless Design

Stateful

Server maintains client-specific

state

• Shorter requests

• Better performance in

processing requests

• Cache coherence possible

– Server can know who’s

accessing what

• File locking possible

Stateless

Server maintains no information on
client accesses

• Each request must identify file
and offsets

• Server can crash and recover
– No state to lose

• No open/close needed
– They only establish state

• No server space used for state
– Don’t worry about supporting

many clients

• Problems if file is deleted on
server

• File locking not possible

2/12/2016

4

Caching

• Hide latency to improve performance for

repeated accesses

• Four places:

– Server’s disk

– Server’s buffer cache (memory)

– Client’s buffer cache (memory)

– Client’s disk

• Client caches risk cache consistency problems

Concepts of Caching (1 of 2)

Centralized control

• Keep track of what files each client has open and
cached

• Stateful file system with signaling traffic

Read-ahead (pre-fetch)

• Request chunks of data before needed

• Minimize wait when actually needed

• But what if data pre-fetched is out of date?

Concepts of Caching (2 of 2)

Write-through
• All writes to file sent to server

– What if another client reads its own (out-of-date) cached copy?

• All accesses require checking with server

• Or … server maintains state and sends invalidations

Delayed writes (write-behind)
• Only send writes to files in batch mode (i.e., buffer locally)

• One bulk write is more efficient than lots of little writes

• Problem: semantics become ambiguous
– Watch out for consistency – others won’t see updates!

Write on close
• Only allows session semantics

• If lock, must lock whole file

Outline

• Overview (done)

• Basic principles (done)

• Network File System (NFS) (next)

• Andrew File System (AFS)

• Dropbox

Network File System (NFS)

• Introduced in 1984 (by Sun Microsystems)

– First was 1970’s Data Access Protocol by DEC

– But NFS first to be used as product

– Developed in conjunction with Sun RPC

• Made interfaces in public domain

– Request For Comment (RFC) by Internet Engineering Task
Force (IETF) – technical development of Internet standards

– Allowed other vendors to produce implementations

• Internet standard is NFS protocol (version 3)

– RFC 1913

• Still widely deployed, up to v4 but maybe too bloated so
v3 widely used

NFS Overview

• Provides transparent access to remote files
– Independent of OS (e.g., Mac, Linux, Windows) or

hardware

• Symmetric – any computer can be server and client
– But many setups have dedicated server

• Export some or all files

• Must support diskless clients

• Recovery from failure
– Stateless, UDP, client retries

• High performance
– Caching and read-ahead

2/12/2016

5

Underlying Transport Protocol

• Initially NFS ran over UDP using Sun RPC

• Why UDP?

– Slightly faster than TCP

– No connection to maintain (or lose)

– Reliable send not issue

• NFS is designed for Ethernet LAN (relatively reliable)

– UDP has error detection but no correction

• NFS retries requests upon error/timeout

NFS Protocols

• Since clients and servers can be implemented for
different platforms, need well-defined way to
communicate � Protocol
– Protocol – agreed upon set of requests and responses

between client and servers

• Once agreed upon, Apple Mac NFS client can talk to a
Sun Solaris NFS server

• NFS has two main protocols
– Mounting Protocol - Request access to exported directory

tree

– Directory and File Access Protocol - Access files and
directories (read, write, mkdir, readdir …)

NFS Mounting Protocol

• Request permission to access contents at pathname

• Client
– Parses pathname

– Contacts server for file handle

• Server
– Returns file handle: file device #, inode #, instance #

• Client
– Create in-memory VFS inode at mount point

– Internally point to r-node (for remote/RPC) for remote files
• Client keeps state, not server

• Soft-mounted – if client access fails, throw error to
processes. But many do not handle file errors well

• Hard-mounted – client blocks processes, retries until server
up (can cause problems when NFS server down)

NFS Architecture
• In many cases, on same LAN, but not required

– Can even have client-server on same machine

• Directories available on server through /etc/exports

– When client mounts, becomes part of directory hierarchy

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

File system mounted at /usr/students is sub-tree located at
/export/people in Server 1, and file system mounted at /usr/staff is

sub-tree located at /nfs/users in Server 2

Example NFS exports File

• File stored on server, typically /etc/exports

See exports(5) for a description.

/public 192.168.1.0/255.255.255.0 (rw,no_root_squash)

• Share folder /public

• Restrict to 192.168.1.0/24 Class C subnet
– Use ‘*’ for wildcard/any

• Give read/write access (rw)

• Allow root user to connect as root
(no_root_squash)

NFS Automounter

• Automounter – only mount when access empty NFS-specified dir
– Attempt unmount every 5 minutes

– Conserve local resources if users don’t need

– Avoids dependencies on unneeded servers when many NFS mounts

2/12/2016

6

NFS Access Protocol

• Most file operations supported from client to server (e.g.,
read(), write(), getattr())
– But doesn’t support open() and close()

• First, client performs lookup RPC
– Gets RPC handle for connection/return call

– Successful call gets file handle (UFID) and attributes

– Note, not like open() since no information stored on server

• On, e.g., read() client sends RPC handle, UFID and offset

• Allows server to be stateless, not remember connections
– Better for scaling and robustness

• However, typical Unix file system can lock file on open(),
unlock on close()
– If doing with NFS must run separate lock daemon

NFS Access Operations

• NFS has 16 core operations (v2, v3 added six more)

NFS Caching - Server

• Keep file data in memory as much as possible
(avoid slow disk)

• Read-ahead – get subsequent blocks (typically 8
KB chunk) before needed

• Server supports write-through (data to disk
immediately when client asks)
– Performance can suffer, so another option only when

file closed, called commit

• Delayed write – only put data on disk in batch
when using memory cache
– Typically every 30 seconds

NFS Caching - Client

• Reduce number of requests to server (avoid slow network)

• Cache – read(), write(), getattr(),
readdir()

• Can result in different versions at client
– Validate with timestamp

– When contact server (local open() or new block), invalidate
block if server has newer timestamp

• Clients responsible for polling server
– Typically 3 seconds for file

– Typically 30 seconds for directory

• Send written (dirty) blocks every 30 seconds
– Flush on close()

Improve Read Performance

• Transfer data in large chunks
– 8K bytes “typical” default (that used to be large)

– Common Linux default 32K

• Read-ahead
– Optimize for sequential file access

– Send requests to read disk blocks before requested by
process

• Generally � tune NFS performance
– Many possibilities - server threads, network timeout,

cache write, cache sizes, server disk layout …

– “Best” depends upon system and workload

Problems with NFS

• File consistency (if client caches)

• Assumes clocks are synchronized

• No locking

– Separate lock manager needed, but adds state

• No reference count for open files

– Could delete file that others have open!

• File permissions may change

– Invalidating access

2/12/2016

7

NFS Version 3

• TCP support

– UDP caused more problems (errors) on WANs or

wireless

– Realized all traffic from one client to server can be

multiplexed on one connection

• Minimizes connection setup cost

• Large-block transfers

– Negotiate for optimal transfer size

– No fixed limit on amount of data per request

NFS Version 4

• Adds state to system

• Supports open() operations since can be

maintained on server

• Read operations not absolute, but relative,

and don’t need all file information, just handle

– Shorter messages

• Locking integrated

• Includes optional security/encryption

Outline

• Overview (done)

• Basic principles (done)

• Network File System (NFS) (done)

• Andrew File System (AFS) (next)

• Dropbox

Andrew File System (AFS)

• Developed at CMU in 1980’s (hence the
“Andrew” from “Andrew Carnegie”)

– Commercialized through IBM to OpenAFS
(http://openafs.org/)

• Transparent access to remote files

• Using Unix-like file operations (creat(),
open(), …)

• But AFS differs markedly from NFS in design
and implementation…

General Observations Motivating AFS

• For Unix users
– Most files are small, less than 10 KB in size

– read() more common than write() - about 6x

– Sequential access dominates, random rare

– Files referenced in bursts – used recently, will likely be used again

• Typical scenarios for most files:
– Many files for one user only (i.e., not shared), so no problem

– Shared files that are infrequently updated to others (e.g., code,
large report) no problem

• Local cache of few hundred MB enough for working set for
most users

• What doesn’t fit? � databases – updated frequently, often
shared, need fine-grained control
– Explicitly, AFS not for databases

AFS Design

• Scalability is most important design goal

– Distributed file systems generally have more users

than other distributed systems

• Key strategy is caching of whole files at clients

– Whole-file serving – entire file and directories

– Whole-file caching – clients store cache on disk

• Typically several hundred

• “Permanent” in that written to local disk, so still there if

rebooted

2/12/2016

8

AFS Example

• Process at client issues open() system call

• Check if local cached copy
– Yes? then use. Done.

– No? then proceed to next step.

• Send request to server

• Server sends back entire copy

• Client opens file (normal Unix file descriptor, local
access)

• read(), write(), etc. all apply to copy

• When close(), if local cached copy changed, send
back to server

AFS Questions

• How does AFS gain control on open()or

close()?

• What space is allocated for cached files on

clients?

• How does AFS ensure cached copies are up-to-

date since may be updated by several clients?

AFS Architecture

• Vice – implements flat file system on server

• Venus – intercepts remote requests, pass to vice
– Vice provides for directory structure, relative location,

working directory

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

System Call Interception in AFS

• Kernel mod

to open()

and

close()

• If remote,

pass to

Venus

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

Cache Consistency

• Vice issues callback promise with file

• If server copy changes, it “calls back” to Venus
processes, cancelling file
– Note, change only happens on close of whole file

• If Venus process re-opens file, must fetch copy from
server
– Note, if client already had open, will still proceed

• If reboot, cannot be sure callbacks are all correct (may
have missed some)
– Checks with server for each open

• Note, versus traditional cache checking, AFS far less
communication for non-shared, read-only files

(Flow diagram next slide)

Implementation of System Calls in AFS
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to

Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server

that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache

list and return the local
name to UNIX.

Transfer a copy of the

file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,

Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server

that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding ca llba ck

promises on the file.

2/12/2016

9

Update Semantics

• No other access control mechanisms

• If several workstations close() file after
writing, only last file will be written

– Others silently lost

• Clients must implement concurrency control
separately

• If two processes on same machine access file,
local Unix semantics apply (i.e., generally
none, unless processes explicitly lock)

AFS Misc

• 1989: Benchmark with 18 clients, standard
NFS load

– Up to 120% improvement over NFS

• 1996: Transarc (acquired by IBM) Deployed on
1000 servers over 150 sites

– 96-98% cache hit rate

• Today, some AFS cells up to 25,000 clients
(Morgan Stanley)

• OpenAFS standard: http://www.openafs.org/

Other Distributed File Systems

• SMB: Server Message Blocks, Microsoft (Samba is a
free re-implementation of SMB). Favors locking and
consistency over client caching.

• CODA: AFS spin-off at CMU. Disconnection and fault
recovery.

• Sprite: research project in 1980’s from UC Berkeley,
introduced first journaling file system.

• Amoeba Bullet File Server: Tanenbaum research
project. Favors throughput with atomic file change.

• xFS: SGI serverless file system by distributing across
multiple machines for Irix OS.

Outline

• Overview (done)

• Basic principles (done)

• Network File System (NFS) (done)

• Andrew File System (AFS) (done)

• Dropbox (next)

Dropbox Overview (1 of 3)

• Client runs on desktop

• Copies changes to local folder
– Uploaded automatically

– Downloads new versions automatically

• Huge scale – 100+ million users, 1 billion files/day

• Design
– Small client, few resources

– Possibility of low-capacity network to user

– Scalable back-end

– (99% of code in Python)

Dropbox Overview (2 of 3)

• Motivation most Web apps high read/write

– e.g., Twitter, Facebook, reddit 100:1, 1000:1, +

• Everyone’s computer has complete copy of
Dropbox

– Run daemon on computer to track “Sync” folder

• Traffic only when changes occur

– Results in file upload : file download about 1:1

– Huge number of uploads compared to traditional
service

• Uses compression to reduce traffic

2/12/2016

10

Dropbox Overview (3 of 3)

DropBox

Daemon
Check for updates

(e.g., stat())
Upload file

(e.g., send())

Dropbox Upload (1 of 3)

• Client attempts to

“commit” new file

– Breaks file into blocks,

computes hashes

– Contacts Metaserver

• Metaserver checks if

hashes known

• If not, Metaserver

returns that it “needs

blocks” (nb)

Dropbox Upload (2 of 3)

• Client talks to

Blockserver to add

needed blocks

• Limit bytes/request

(typically 8 MB), so may

be multiple requests

Dropbox Upload (3 of 3)

• Client commits again

– Contacts Metaserver

with same request

• This time, ok

Dropbox Download (1 of 2)

• Client periodically polls

Metaserver

– Lists files it “knows

about”

• Metaserver returns

information on new

files

Dropbox Download (2 of 2)

• Client checks if blocks
exist
– For new file, this fails

• Retrieve blocks

• Limit bytes/request
(typically 8 MB), so may
be multiple requests

• When done, reconstruct
and add to local file
system
– Using local filesystem

system calls (e.g.,
open(), write()…)

2/12/2016

11

Dropbox Misc – Streaming Sync

• Normally, cannot

download to another

until upload complete

– For large files, takes time

“sync”

• Instead, enable client to

start download when

some blocks arrive,

before commit

– Streaming Sync

Dropbox Misc – LAN Sync

• LAN Sync – download

from other clients

• Periodically broadcast

on LAN (via UDP)

• Response to get TCP

connection to other

clients

• Pull blocks over HTTP

Dropbox Architecture – v1 Dropbox Architecture – v2

Dropbox Architecture – v3 Dropbox Architecture – v4

2/12/2016

12

Dropbox Architecture – v5 Bit Bucket

File System Functions

• Abstraction of file system functions that apply
to distributed file systems

• Most use set of functions derived from Unix
(next slide)

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

UNIX File System Operations

filedes = open(name, mode)

filedes = creat(name, mode)

Opens an existing file with given name.

Creates a new file with given name.

Both operations deliver file descriptor referencing open

file. The mode is read, write or both.

status = close(filedes) Closes open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from file referenced by filedes to buffer.

Transfers n bytes to file referenced by filedes from buffer.

Both operations deliver number of bytes actually transferred

and advance read-write pointer.

pos = lseek(filedes, offset,

whence)

Moves read-write pointer to offset (relative or absolute,

depending on whence).

status = unlink(name) Removes file name from directory structure. If file

has no other names, it is deleted.

status = link(name1, name2) Adds new name (name2) for file (name1).

status = stat(name, buffer) Gets file attributes for file name into buffer.

File Service Architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

File Service Architecture

• Flat file service
– Implement operations on the files

– Manage unique file identifiers (UFIDs) – create, delete

• Directory service
– Mapping between text names and UFIDs

– Create, delete new directories and entries

– Ideally, hierarchies, as in Unix/Windows

• Client module
– Integrate flat file and directory services under single API

– Make available to all computers

