
class.wings Tue Feb 23 13:29:18 2016 1

DRAGONFLY WINGS IN-CLASS LECTURE

OVERVIEW:
+ Do about 1 week in, after students have done tutorial
+ Post AFTER class

GOAL: help implement Project

 BUT ALSO --> Practical issues with real-time, distributed
 state simulation! (i.e., also CLASS MATERIAL)

0) ASSUME

 Tutorial done

 -- Worked through! Not just compilied game-final.zip

 Networking is complete and debugged

 -- NetworkManager, EventNetwork and Sentry

 -- Tested! Be sure to test thoroughly before proceeding!

1) PICTURE

 B E Objects
 S S H HOST ----------> CLIENT

 NM SENTRY <---------- NM SENTRY
 P2 Input
 DF DF

2) QUESTION - why is synchronization needed? If each PC runs the
exact same simulation, no need to synchronize!

- This means exact same random seed, too!

 NOTE: Random number generation is complex function. e.g.,

 // Generate "random" number.
 int rand()
 g_next = ((5 * g_next) + 1) mod 16

 // "Seed"
 void srand(int seed)
 g_next = seed

 e.g., Host picks from rand() - 32, 12, 10, 64 ...
 Client picks from rand() - 32, 12, 10, 64 ...

 But if Objects processed in slightly different order (e.g., Saucer 1
 before Saucer 2), will be off!

- User input adds variability -> takes time to propogate to other host

 Even if Objects stored in same order, latency from event (e.g., user
 input) could mean additional random number drawn --> will be off!

class.wings Tue Feb 23 13:29:18 2016 2

 --> Will be out of sync during travel (and could be some effect)

- So *cannot* be done at the exact same time

 = Could apply "timestamp" and either:

 + Delay user action - would feel like lag. How long to delay?

 + Roll back Host state (time warp) - complicated and change what host sees

3) THEREFORE -> HOST is authoritative.

-- Has the final say of the world.

-- CLIENT will simulate as much as possible, but HOST is responsible
for "important" decisions (e.g., is Hero hit by Saucer?)

(Note: has side benefit of helping prevent cheating by CLIENT)

4) QUESTION: What player input commands does CLIENT send?

 KEY - for keystrokes
 MOUSE - for when mouse is clicked

 Note: Do *not* need to send when Mouse is moved. Do not need to
 show opponent’s RETICLE.

 KEY includes keypressed and MOUSE includes (x,y)

 Note: Client can check for valid key before sending (e.g., no need
 to send non-recognized keystroke)

5) QUESTION: What object commands does HOST send?

 NEW - whenever a new object is created
 UPDATE - whenever an existing object has changed
 DELETE - whenever an object is destroyed

Each includes Object ID, and UPDATE and DELETE includes serialized attributes

e.g., CLIENT receives DELETE

 df::WorldManager &world_manager = df::WorldManager::getInstance();
 Object *p_obj;
 p_obj = world_manager.objectWithId(id);
 if (p_obj == NULL)
 // error! not found
 world_manager.markForDelete(p_obj);

6) QUESTION: What are all the game Objects for Saucer Shoot 2?

 Bullet
 Explosion
 Hero
 Points
 Saucer
 Score
 Stars
 GameStart (not required)

class.wings Tue Feb 23 13:29:18 2016 3

 Nuke Display (not required)
 GameOver (not required)

7) QUESTION: Do all need to be synchronized?

STARS --> QUESTION: does it matter if they deviated in location/speed?

 -- Could send NEW when HOST creates

 -- Could have both HOST and CLIENT create their own "set" upon startup

SAUCER

 -- Position matters --> send NEW

 -- Client and Host can both do velocity (no need to update position)

 -- QUESTION: when would they deviate?

 ANSWER: when "respawns" in random location off to right --> UPDATE

 -- QUESTION: what about animations?

 ANSWER: never need to synchronize (a "decoration")

COLLISION

 -- Both Client and Host can simulate collision

 -- But Host needs to officially determine outcome (authoritative)

 -- Destroy Bullet and Saucer --> DELETE

 QUESTION: What about EXPLOSION?

 -- Could create on Host and send NEW QUESTION: or ...?

 -- Host and Client both create when Saucer dies (saves bwidth)

HERO

 -- Does not have velocity

 -- When Player 1 key --> Host moves --> UPDATE

 -- When Player 2 key --> Client could move --> UPDATE to Host

 QUESTION: But what if move was invalid (e.g., Saucer there or Hero there)?

 ANSWER: Host would tell Client, and Client "rollback" / "fix" --> BLEAH

 QUESTION: So, why would a system ever do that?

 ANSWER: Avoid LAG. Basically, otherwise at least 1 RTT for response

 -- SO, when Player 2 key

 --> Client sends KEY

class.wings Tue Feb 23 13:29:18 2016 4

 --> Host applies --> UPDATE

RETICLE

 -- QUESTION: Does opponent care where this is? Probably not.

 --> Don’t syncrhonize

 -- Host mouse click --> new Bullet --> NEW

 -- Client mouse click

 --> send MOUSE (x,y)

 --> Host receives, creates Bullet --> NEW

 -- NOTE: can do "smart" checking on Client

 e.g., when click, is too soon to spawn --> if so, no need to send

 BUT -> Host will still need to check, too --> avoid CHEAT

POINTS

 -- When change value --> UPDATE

 -- Could do "time" / "ticks" locally, so only UPDATE when Saucer destroy

8) QUESTION: How to "detect" changes in HOST?

 Host poll all Objects every step

 Could just serialize() every object

 --> remember, only sends changes since last serialize()

 QUESTION: why not?

 ANSWER: even "decoration" changes serialized

 --> e.g., animation

 So, check specific attributes --> isModified()

 --> e.g., isModified(df::POS)

 Send as appropriate

 TIP: Make function, bool needSynch(Object *p) --> TRUE if synch, else FALSE

 // Bullet synchronized when created
 if (p_o->getType() == "Bullet-Host" || p_o->getType() == "Bullet-Client") {
 if (p_o->isModified(df::ID))
 return true;
 return false;
 }

 // Hero synchronized when moves or is created. SHOW DIFF ONLY

class.wings Tue Feb 23 13:29:18 2016 5

 if (p_o->getType() == "Hero-Host" || p_o->getType() == "Hero-Client") {
 if (p_o->isModified(df::ID) ||
 p_o->isModified(df::POS))
 return true;
 return false;
 }

 ...

 NOTE -> SAUCER (additional force synch in move-to-start)

 // Saucer only synchronized when created.
 // Movement handled locally (synchronized again in moveToStart()).
 if (p_o->getType() == "Saucer") {
 if (p_o->isModified(df::ID))
 return true;
 return false;
 }

 USE IT!!

 // Only send objects needing synchronization.
 df::ObjectList all_objects = world_manager.getAllObjects();
 df::ObjectListIterator i(&all_objects);
 for (i.first(); !i.isDone(); i.next()) {

 if (needSynch(p_o)) {

 // Set message type.
 // If object id is modified, assume NEW
 HostMessageType msg_type;
 if (p_temp_o->isModified(df::ID))
 msg_type = ADD_OBJECT;
 else
 msg_type = UPDATE_OBJECT;

 sendObject(p_temp_o, msg_type);

 }

9) NOTE - needs player-versions of some objects

 -- HOST-HERO and CLIENT-HERO. QUESTION: Others?

 -- Bullets (color and who gets points)

 -- Points

 -- Could make separate Object, but duplicate a lot of code.

 QUESTION: Alternative?

 -- Could create "bool is_host" funcationality. Act appropriately.

 Hero get keyboard input

 if isHost()
 // apply to Host-Hero
 else
 // send to Host
 end if

class.wings Tue Feb 23 13:29:18 2016 6

 Use ROLE singleton (see slides/writeup)

10) REMEMBER Saucer Shoot 2 only needs

 Core gameplay

 Does not need:

 GameStart
 Nuke Display
 GameOver

 HOST starts - waits for CLIENT

 CLIENT connects

 --> Start moving and shooting!

 When either/both die

 --> Game exits (gracefully)

 NOTE: Can add extras for 5% Misc points

 -- If so, Subtle - GameStart is "inactive()" --> getAllObjects(true)

HAPPY SHOOTING!

