
1/29/2016

1

File System Design for an NFS File
Server Appliance

Dave Hitz, James Lau, and Michael Malcolm
Technical Report TR3002

 NetApp

2002

http://www.netapp.com/us/library/white-papers/wp_3002.html
(At WPI: http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html)

Introduction

• In general, appliance is device designed to
perform specific function

• Distributed systems trend has been to use
appliances instead of general purpose computers.
Examples:
– routers from Cisco and Avici
– network terminals
– network printers

• For files, not just another computer with your
files, but new type of network appliance
 Network File System (NFS) file server

Introduction: NFS Appliance

• NFS File Server Appliances have different
requirements than those of general purpose
file system
– NFS access patterns are different than local file

access patterns

– Large client-side caches result in fewer reads than
writes

• Network Appliance Corporation uses Write
Anywhere File Layout (WAFL) file system

Introduction: WAFL

• WAFL has 4 requirements
– Fast NFS service

– Support large file systems (10s of GB) that can grow (can add
disks later)

– Provide high performance writes and support Redundant
Arrays of Inexpensive Disks (RAID)

– Restart quickly, even after unclean shutdown

• NFS and RAID both strain write performance:
– NFS server must respond after data is written

– RAID must write parity bits also

WPI File System

• CCC machines have central, Network File System
(NSF)
– Have same home directory for cccwork2,
cccwork3…

– /home has 10,113 directories!

• Previously, Network File System support from
NetApp WAFL

• Switched to EMC Celera NS-120
 similar features and protocol support

• Provide notion of “snapshot” of file system (next)

Outline

• Introduction (done)

• Snapshots : User Level (next)

• WAFL Implementation

• Snapshots: System Level

• Performance

• Conclusions

http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html

1/29/2016

2

Introduction to Snapshots

• Snapshots are copy of file system at given point in time

• WAFL creates and deletes snapshots automatically at preset
times
– Up to 255 snapshots stored at once

• Uses copy-on-write to avoid duplicating blocks in the active
file system

• Snapshot uses:
– Users can recover accidentally deleted files

– Sys admins can create backups from running system

– System can restart quickly after unclean shutdown
• Roll back to previous snapshot

User Access to Snapshots

• Example, suppose accidentally removed file named “todo”:

CCCWORK3% ls -lut .snapshot/*/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_18.15.29/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_19.27.40/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_19.37.10/todo

• Can then recover most recent version:

CCCWORK3% cp .snapshot/2011_10_26_19.37.10/todo todo

• Note, snapshot directories (.snapshot) are hidden in that they
don’t show up with ls (even ls -a) unless specifically requested

Snapshot Administration

• WAFL server allows sys admins
to create and delete
snapshots, but usually
automatic

• At WPI, snapshots of /home.
Says:
– 3am, 6am, 9am, noon, 3pm,

6pm, 9pm, midnight
– Nightly snapshot at midnight

every day
– Weekly snapshot is made on

Saturday at midnight every
week

 But looks like every 1 hour
(fewer copies kept for older
periods and 1 week ago max)

claypool 168 CCCWORK3% cd .snapshot
claypool 169 CCCWORK3% ls -1
home-20160121-00:00/
home-20160122-00:00/
home-20160122-22:00/
home-20160123-00:00/
home-20160123-02:00/
home-20160123-04:00/
home-20160123-06:00/
home-20160123-08:00/
home-20160123-10:00/
home-20160123-12:00/
…
home-20160127-16:00/
home-20160127-17:00/
home-20160127-18:00/
home-20160127-19:00/
home-20160127-20:00/
home-latest/

Snapshots at WPI (Windows)
• Mount UNIX space (\\storage.wpi.edu\home), add \.snapshot

to end

• Can also right-click on file and
choose “restore previous version”

Note, files in .snapshot

do not count against quota

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (next)

• Snapshots: System Level

• Performance

• Conclusions

WAFL File Descriptors

• Inode based system with 4 KB blocks

• Inode has 16 pointers, which vary in type depending upon file
size
– For files smaller than 64 KB:

• Each pointer points to data block

– For files larger than 64 KB:

• Each pointer points to indirect block

– For really large files:

• Each pointer points to doubly-indirect block

• For very small files (less than 64 bytes), data kept in inode
itself, instead of using pointers to blocks

1/29/2016

3

WAFL Meta-Data

• Meta-data stored in files
– Inode file – stores inodes
– Block-map file – stores free blocks
– Inode-map file – identifies free inodes

Zoom of WAFL Meta-Data
(Tree of Blocks)

• Root inode must be in fixed location

• Other blocks can be written anywhere

Snapshots (1 of 2)
• Copy root inode only, copy on write for changed data blocks

• Over time, old snapshot references more and more data blocks
that are not used

• Rate of file change determines how many snapshots can be stored
on system

Snapshots (2 of 2)
• When disk block modified, must modify

meta-data (indirect pointers) as well

• Batch, to improve I/O performance

Consistency Points (1 of 2)

• In order to avoid consistency checks after unclean
shutdown, WAFL creates special snapshot called
consistency point every few seconds

– Not accessible via NFS

• Batched operations are written to disk each
consistency point

– Like journal

• In between consistency points, data only written
to RAM

Consistency Points (2 of 2)
• WAFL uses NVRAM (NV = Non-Volatile):

– (NVRAM is DRAM with batteries to avoid losing during
unexpected poweroff, some servers now just solid-state or
hybrid)

– NFS requests are logged to NVRAM
– Upon unclean shutdown, re-apply NFS requests to last

consistency point
– Upon clean shutdown, create consistency point and turnoff

NVRAM until needed (to save power/batteries)

• Note, typical FS uses NVRAM for metadata write cache
instead of just logs
– Uses more NVRAM space (WAFL logs are smaller)

• Ex: “rename” needs 32 KB, WAFL needs 150 bytes
• Ex: write 8 KB needs 3 blocks (data, inode, indirect pointer), WAFL

needs 1 block (data) plus 120 bytes for log

– Slower response time for typical FS than for WAFL (although
WAFL may be a bit slower upon restart)

1/29/2016

4

Write Allocation

• Write times dominate NFS performance
– Read caches at client are large
– Up to 5x as many write operations as read operations at

server
• WAFL batches write requests (e.g., at consistency

points)
• WAFL allows “write anywhere”, enabling inode next to

data for better perf
– Typical FS has inode information and free blocks at fixed

location
• WAFL allows writes in any order since uses consistency

points
– Typical FS writes in fixed order to allow fsck to work if

unclean shutdown

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (done)

• Snapshots: System Level (next)

• Performance

• Conclusions

The Block-Map File
• Typical FS uses bit for each free block, 1 is allocated and 0 is free

– Ineffective for WAFL since may be other snapshots that point to
block

• WAFL uses 32 bits for each block
– For each block, copy “active” bit over to snapshot bit

Creating Snapshots
• Could suspend NFS, create snapshot, resume NFS

– But can take up to 1 second

• Challenge: avoid locking out NFS requests

• WAFL marks all dirty cache data as IN_SNAPSHOT.
Then:
– NFS requests can read system data, write data not

IN_SNAPSHOT

– Data not IN_SNAPSHOT not flushed to disk

• Must flush IN_SNAPSHOT data as quickly as
possible

IN_SNAPSHOT

Can be used
new

flush

Flushing IN_SNAPSHOT Data

• Flush inode data first
– Keeps two caches for inode data, so can copy system cache to

inode data file, unblocking most NFS requests
• Quick, since requires no I/O since inode file flushed later

• Update block-map file
– Copy active bit to snapshot bit

• Write all IN_SNAPSHOT data
– Restart any blocked requests as soon as particular buffer flushed

(don’t wait for all to be flushed)

• Duplicate root inode and turn off IN_SNAPSHOT bit

• All done in less than 1 second, first step done in 100s of ms

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (done)

• Snapshots: System Level (done)

• Performance (next)

• Conclusions

1/29/2016

5

Performance (1 of 2)

• Compare against other NFS systems

• How to measure NFS performance?
– Best is SPEC NFS

• LADDIS: Legato, Auspex, Digital, Data General, Interphase
and Sun

• Measure response times versus throughput
– Typically, servers quick at low throughput then

response time increases as throughput requests
increase

• (Me: System Specifications?!)

Performance (2 of 2)

(Typically, look for “knee” in curve)

Notes:
+ FAS has only 8 file systems, and others have dozens
- FAS tuned to NFS, others are general purpose

best
response

time

best
through-

put

NFS vs. Newer File Systems

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000

R
e
s
p

o
n

s
e
 T

im
e
 (

M
s
e
c
/O

p
)

Generated Load (Ops/Sec)

10 MPFS Clients

5 MPFS Clients & 5

NFS Clients

10 NFS Clients

• Remove NFS server as bottleneck
• Clients write directly to device

MPFS = multi-path file system
Used by EMC Celerra

Conclusion

• NetApp (with WAFL) works and is stable

– Consistency points simple, reducing bugs in code

– Easier to develop stable code for network
appliance than for general system

• Few NFS client implementations and limited set of
operations so can test thoroughly

• WPI bought one

