File System Design for an NFS File
Server Appliance

Dave Hitz, James Lau, and Michael Malcolm
Technical Report TR3002
NetApp
2002

http://www.netapp.com/us/library/white-papers/wp_3002.html

(At WPI: http://www.wpi.edu// ics/CCC/Help/Uni html)

Introduction

In general, appliance is device designed to
perform specific function

Distributed systems trend has been to use
appliances instead of general purpose computers.
Examples:

— routers from Cisco and Avici

— network terminals

— network printers

For files, not just another computer with your
files, but new type of network appliance

- Network File System (NFS) file server

1/29/2016

Introduction: WAFL

* WAFL has 4 requirements
— Fast NFS service

— Support large file systems (10s of GB) that can grow (can add
disks later)

— Provide high performance writes and support Redundant
Arrays of Inexpensive Disks (RAID)

— Restart quickly, even after unclean shutdown

* NFS and RAID both strain write performance:
— NFS server must respond after data is written
— RAID must write parity bits also

Introduction: NFS Appliance

* NFS File Server Appliances have different
requirements than those of general purpose
file system
— NFS access patterns are different than local file

access patterns

— Large client-side caches result in fewer reads than
writes

Network Appliance Corporation uses Write
Anywhere File Layout (WAFL) file system

WPI File System

CCC machines have central, Network File System
(NSF)

— Have same home directory for cccwork?2,
cccwork3..

— /home has 10,113 directories!

Previously, Network File System support from
NetApp WAFL

Switched to EMC Celera NS-120
-> similar features and protocol support

Provide notion of “snapshot” of file system (next)

Outline

* Introduction (done)
* Snapshots : User Level (next)
* WAFL Implementation

* Snapshots: System Level

* Performance

Conclusions

http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html

Introduction to Snapshots

Snapshots are copy of file system at given point in time
WAFL creates and deletes snapshots automatically at preset
times

— Up to 255 snapshots stored at once

Uses copy-on-write to avoid duplicating blocks in the active
file system
Snapshot uses:

— Users can recover accidentally deleted files

— Sys admins can create backups from running system

— System can restart quickly after unclean shutdown

* Roll back to previous snapshot

User Access to Snapshots

Example, suppose accidentally removed file named “todo”:

CCCWORK3% 1s -lut .snapshot/*/todo
-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42
.snapshot/2011_10_26_18.15.29/todo
-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42
.snapshot/2011_10_26_19.27.40/todo
-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42
.snapshot/2011_10_26_19.37.10/todo

Can then recover most recent version:

CCCWORK3% cp .snapshot/2011_10_26_19.37.10/todo todo

Note, snapshot directories (. snapshot) are hidden in that they
don’t show up with 1s (even 1s -a) unless specifically requested

1/29/2016

Snapshots at WPI (Windows)

Mount UNIX space (\\storage.wpi.edu\home),add \ . snapshot
to end

e « Canalso right-click on file and

Note, files in % n ion”
choose “restore previous version

do not count against quota

Snapshot Administration

WAFL server allows sys admins
to create and delete
snapshots, but usually
automatic
At WPI, snapshots of /home.
Says:
— 3am, 6am, 9am, noon, 3pm,
6pm, 9pm, midnight
— Nightly snapshot at midnight
every day
— Weekly snapshotis made on
Saturday at midnight every
week
-> But looks like every 1 hour
(fewer copies kept for older
periods and 1 week ago max)

claypool 168 CCCWORK3% cd .snapshot
claypool 169 CCCWORK3% s -1
home-20160121-00:00/
home-20160122-00:00/
home-20160122-22:00/
home-20160123-00:00/
home-20160123-02:00/
home-20160123-04:00/
home-20160123-06:00/
home-20160123-08:00/
home-20160123-10:00/
home-20160123-12:00/

home-20160127-16:00/
home-20160127-17:00/
home-20160127-18:00/
home-20160127-19:00/
home-20160127-20:00/
home-latest/

Outline
Introduction (done)
Snapshots : User Level (done)
WAFL Implementation (next)

Snapshots: System Level
Performance
Conclusions

.

WATFL File Descriptors

Inode based system with 4 KB blocks

Inode has 16 pointers, which vary in type depending upon file

size

— For files smaller than 64 KB:

« Each pointer points to data block

— For files larger than 64 KB:

« Each pointer points to indirect block

— For really large files:

« Each pointer points to doubly-indirect block
For very small files (less than 64 bytes), data kept in inode
itself, instead of using pointers to blocks

1/29/2016

WAFL Meta-Data

* Meta-data stored in files
— Inode file — stores inodes
— Block-map file — stores free blocks
— Inode-map file — identifies free inodes

Root Inode P

Incde File

All Other Files

Block Map Inode Map
File File

Other Files in the File system

Zoom of WAFL Meta-Data
(Tree of Blocks)

* Root inode must be in fixed location
« Other blocks can be written anywhere
Root Inode

inode File
Indirect blocks

File
Blocks

In

Reqular File
Indirect Blocks

Reqular File
Data Blocks

Blook Map Inode Map Randem FRandom
File File Small File Large Fil

Snapshots (1 of 2)

Copy root inode only, copy on write for changed data blocks

= I® >
@ . €
Before After After
snapshot snapshot modifications.
e e =
File System Snepstor File System by File System
7

Deleted Modified New
dra
Over time, old snapshot references more and more data blocks
that are not used
Rate of file change determines how many snapshots can be stored
on system

Snapshots (2 of 2)

* When disk block modified, must modify
meta-data (indirect pointers) as well

(a) Batare Block Update (k) After Block Update

Snapshot Root Snapshot Moot
Inode Inode Inode Inods

Inade File
Indirect Black
Inede File
Block

Regular File
Indirect Black

Regular File
Data Block

* Batch, to improve 1/0 performance

Consistency Points (1 of 2)

* In order to avoid consistency checks after unclean
shutdown, WAFL creates special snapshot called
consistency point every few seconds

— Not accessible via NFS

Batched operations are written to disk each
consistency point
— Like journal

In between consistency points, data only written
to RAM

Consistency Points (2 of 2)

WAFL uses NVRAM (NV = Non-Volatile):

— (NVRAM is DRAM with batteries to avoid losing during
unexpected poweroff, some servers now just solid-state or
hybrid)

— NFS requests are logged to NVRAM

— Upon unclean shutdown, re-apply NFS requests to last
consistency point

— Upon clean shutdown, create consistency point and turnoff
NVRAM until needed (to save power/batteries)

Note, typical FS uses NVRAM for metadata write cache

instead of just logs

— Uses more NVRAM space (WAFL logs are smaller)

* Ex: “rename” needs 32 KB, WAFL needs 150 bytes
+ Ex: write 8 KB needs 3 blocks (data, inode, indirect pointer), WAFL
needs 1 block (data) plus 120 bytes for log

— Slower response time for typical FS than for WAFL (although
WAFL may be a bit slower upon restart)

Write Allocation

Write times dominate NFS performance

— Read caches at client are large

— Up to 5x as many write operations as read operations at
server

WAFL batches write requests (e.g., at consistency

points

WAFL allows “write anywhere”, enabling inode next to

data for better perf

— Typical FS has inode information and free blocks at fixed
location

WAFL allows writes in any order since uses consistency

points

— Typical FS writes in fixed order to allow f£sck to work if
unclean shutdown

Outline
Introduction (done)
Snapshots : User Level (done)
WAFL Implementation (done)
Snapshots: System Level (next)
Performance
Conclusions

1/29/2016

« Typical FS uses bit for each free block, 1 is allocated and 0 is free
— Ineffective for WAFL since may be other snapshots that point to

block

The Block-Map File

* WAFL uses 32 bits for each block
— For each block, copy “active” bit over to snapshot bit

Time

00000000
00000001
00000011
00000111
00000110
00000110
00000100
00000000,

Block-Map Entry Description

Bioek Is unused

Biock Is allocated for active F§
Snapshot #1 Is created
Snapshot #2 Is created

Block Is deleted from active FS
Snapshot #3 Is created
Snapshot #1 Is deleted
Snapshot #2 Is deleted;

\ black Is unused
bit 0: set for active file system

bit 3: set for Snapshot #3

Creating Snapshots

Could suspend NFS, create snapshot, resume NFS
— But can take up to 1 second

Challenge: avoid locking out NFS requests

WAFL marks all dirty cache data as IN_SNAPSHOT.
Then:

— NFS requests can read system data, write data not
IN_SNAPSHOT
— Data not IN_SNAPSHOT not flushed to disk

Must flush IN_SNAPSHOT data as quickly as

possible fush
.L/ I B B IN_SNAPSHOT
~ HBE Can be used

new

.

Flushing IN_SNAPSHOT Data

Flush inode data first
— Keeps two caches for inode data, so can copy system cache to
inode data file, unblocking most NFS requests
+ Quick, since requires no 1/0 since inode file flushed later
Update block-map file
— Copy active bit to snapshot bit
Write all IN_SNAPSHOT data
— Restart any blocked requests as soon as particular buffer flushed
(don’t wait for all to be flushed)
Duplicate root inode and turn off IN_SNAPSHOT bit

All done in less than 1 second, first step done in 100s of ms

Introduction

Snapshots : User Level
WAFL Implementation
Snapshots: System Level

Perform

ance

Conclusions

Outline

Performance (1 of 2)

* Compare against other NFS systems
* How to measure NFS performance?

— Best is SPEC NFS

* LADDIS: Legato, Auspex, Digital, Data General, Interphase
and Sun

* Measure response times versus throughput

— Typically, servers quick at low throughput then
response time increases as throughput requests
increase

* (Me: System Specifications?!)

Average response time (msec)

Performance (2 of 2)

~— FAServer 8X Cluster
Auspex NS 8000

= Sun SPARCcIuster 1

= Sun SPARCenter 2000

— Sun SPARCserver 1000

(Typically, look for “knee” in curve)

500 1000 1500 2000 2500 3000 3500
NFS operations/second

Notes:

+ FAS has only 8 file systems, and others have dozens

- FAS tuned to NFS, others are general purpose

1/29/2016

Conclusion

* NetApp (with WAFL) works and is stable
— Consistency points simple, reducing bugs in code
— Easier to develop stable code for network
appliance than for general system

* Few NFS client implementations and limited set of
operations so can test thoroughly

* WPI bought one ©

Response Time (Msec/Op)

NFS vs. Newer File Systems

MPFS = multi-path file system
Used by EMC Celerra

-+-10 MPFS Clients

-#5 MPFS Clients & 5
NFS Clients

10 NFS Clients

"

[1000 2000 3000 4000 5000

Generated Load (Ops/Sec)

* Remove NFS server as bottleneck
* Clients write directly to device

