
Introduction to Distributed Objects

The idea of distributed objects is an extension of the concept of remote procedure calls. In
a remote procedure call system (Sun RPC, DCE RPC, Java RMI), code is executed
remotely via a remote procedure call. The unit of distribution is the procedure / function
/method (used as synonyms). So the client has to import a client stub (either manually as
in RPC or automatically as in RMI) to allow it to connect to the server offering the remote
procedure.

Object as Distribution Unit

In a system for distributed objects, the unit of distribution is the object. That is, a client
imports a ”something” (in Java’s JINI system, it’s called a proxy) which allows the client
access to the remote object as if it were part of the original client program (as with RPC
and RMI, sort of transparently). A client actually imports a Java class and this becomes
part of the set of classes available on the client machine. So, for example, the client can
define subclasses of this imported class, overload methods, etc.

In addition, distributed object systems provide additional services, like a discovery service
that allows clients to locate the objects they need, security services, reliability services, etc.

Distributed object technologies:

1. DCOM (Distributed Common Object Model), developed by Microsoft, but also
available on other platforms. Built on top of DCE’s RPC, interacts with COM.

2. CORBA (Common Object Request Broker Architecture), defined by the Object
Management Group, an industry consortium. CORBA is available for most major
operating systems

3. JINI (“Genie,” JINI is not initials — a joke; JINI actually doesn’t stand for
anything.) JINI is developed on top of Java. JINI was released by Sun in January,
1999.

CS 4513 1 week7-distobj.tex



JINI

TDS, Chp 12.3

JINI is a distributed object technology developed by Sun, partly to make better distributed
programming tools available to Java programmers, and party to overcome some of the
inherent problems with distributed programming.

RPC systems handle issues such as data transport, data formatting, finding correct port
number, and to some degree finding the machine a server is running on.

However, JINI handles additional problems:

• Finding a service if you don’t know the name of it!! Suppose you want to find a laser
printer (but you don’t care which one) and so you don’t know a specific name to look
for. None of the RPC systems we looked at handle this issue. JINI does, by allowing
the client to search for a service based on attributes.

• Finding a replacement service if the service you’ve been using becomes unavailable,
either because of network failure or server failure. (JINI again)

• Automatic discovery — client and server discover each other automatically, and
discover what they need to know about each other.

• Coordination. Allows processes to coordinate their activities.

CS 4513 2 week7-distobj.tex



JINI Scenarios

Motivating examples for automatic discovery features of how JINI might be used.

Automatic discovery:

• telephone automatically finds answering machine

• refrigerator finds handheld PC to add milk to the shopping list (or sends message to
home delivery service so milk is on front door step)

• digital cameral finds printer to print on

• PC automatically finds a printer on a network

CS 4513 3 week7-distobj.tex



Basic JINI Concepts

Required Servers

The following servers must be run to use JINI

• Web server. This must run on any machine which will host services, because JINI
uses HTTP to transport code.

• RMI activation daemon (rmid) must also run on any machine that will host services

• JINI Lookup Service (reggie) must run on at least one machine

JINI services are organized into communities.

All the machines in a community will have access to the same set of services (shared
resources), and a community must have one or more Lookup Services running on it. If
there’s more than one Lookup Service in a community, then they make the same set of
services available, and the multiple Lookup services are for redundancy in case of a failure
or for improved performance.

By default, a community is all the machines on your local network. If the administrator
chooses, the community may be set up to be a smaller group (for example, at WPI the
communities could be organized on department level, or in a company at the level of a
workgroup.) Also, distinct communities can be federated, so that (some or all of) the
services in one community are made available to clients in another community. In this way,
the idea of a JINI community is scalable, and the presence of a central (per community)
Lookup Service is not a barrier to scalability.

Key concepts of JINI:

1. Discovery

2. Join

3. Lookup

4. Leasing

5. Remote Events

6. Transactions

7. Coordination

CS 4513 4 week7-distobj.tex



Discovery

Discovery is the process by which client find which community they belong to, and where
their lookup service is located. There are several discovery protocols:

• Multicast Request Protocol (Fig DJ1.1, AR2.2) — used when an application or a
service wishes to locate a Lookup Service so it can register itself. The message is sent
to a “Lookup Server” multicast address

• Multicast Announcement Protocol is used when a Lookup Service wishes to announce
its availability as a Lookup Service. Potential JINI clients will be listening to the
multicast address so they will know where to find a Lookup Service.

• Unicast Discovery Protocol is used when a service knows the name and address of the
service it needs to communicate with. Services are addressed with a URL using the
protocol name of jini, and in jini://jiniserver.wpi.edu Unicast Discovery Protocol
might be used, for example, when one lookup service is contacting another one to
federate the two communities. Another use of the Unicast Discovery Protocol would
be when the service wanted to join a community other than its default one (which is
what would be found through the Multicast Request Protocol). For example, if a
group was developing a new JINI service, they might want to put it in a
”experimental” community, so that developers could test it out but normal users
wouldn’t be able to find it.

CS 4513 5 week7-distobj.tex



Registering a Service (Join)

See Fig AR2.3

The name of the service that runs the Lookup Service is called the ServiceRegistrar , hence
”reggie”. The discovery process returns a interface to the ServiceRegistrar, which a service
uses to register. The service uses the register() method of this interface to register itself
with the ServiceRegistrar. The service passes two parameters to the ServiceRegistrar: a
proxy and a set of attributes.

Service Object

The proxy is serializable Java object (if you don’t know Java, it’s just Java code that can
be downloaded to another machine, like applets are). The proxy is what is downloaded to
the client when the client wants to use the service. The client calls a method in the proxy,
and the proxy takes care of contacting the server, or whatever it has to do to perform the
service. The proxy is like the RMI stub (which is downloaded from the server to the client
and runs on the client to handle the communications with the server) but it’s much more
general. It could just be an RMI stub, which marshals the data and communicated it to the
server. Bu, for example, the proxy could contact three different machines if that’s what was
necessary to perform its service (for example, the proxy might have to consult databases
that live on several different machines). The proxy might be something like a printer
driver, so that when a new printer becomes available, clients obtain the printer driver for
the new printer through the JINI Lookup process. The proxy can even do all the work
within its own code without contacting any other machine, if that’s what’s appropriate. So
the proxy is mobile code which is downloaded to the client to perform any necessary work.

Move Code to Clients

Proxies really represent a paradigm shift in distributed programming. In the past, the
principle of distributed computing was to move the data to the code. That is, you had code
(servers) running on certain machines, and to use them, clients sent data to the server
machines. Even in RPC or RMI, which involved running stub programs on the client
machines, task of the code on the client machines was just to move the data to the server
machines (marshalling, data conversion, network transport), so RPC / RMI still represents
a move-the-data-to-the-code philosophy. With proxies, you can move arbitrary code to the
clients. (Mobile code is of course one of the key ideas of Java — applets are a prime
example of mobile code.)

CS 4513 6 week7-distobj.tex



Service Attributes

The attributes are values the service uses to describe itself to the ServiceRegistrar and,
through the ServiceRegistrar, to potential clients. There are some standard attributes that
a service must provide: service name, location (server machine and port number),
comments. But it’s also possible to have other attributes. A printer, for example, might
have attributes that indicate that it’s a printer, a laser printer, and a color printer. Then
when a client is looking for a color printer, it can search for attribute values rather than a
service name. According to the Core JINI book, Sun is having conversations with industry
groups to come up with a standard set of attributes and values for common services.

CS 4513 7 week7-distobj.tex



Finding a Service (Lookup)

The ServiceRegistrar interface has a method called lookup, which allows clients to look for
a service. The lookup call allows the client to specify the type of the proxy (i.e., the name
of the interface the proxy implements), the unique identifier of the service, or by attribute
values. As a result of the lookup call, the client gets the proxy, which it uses to perform the
service.

How does the client know what methods the proxy has. The client needs to know the
names of the methods ahead of time.

One possibility is that the client knows the specific interface that the server implements.
For example, if a client needs to print a bitmap, it might look for a service that implements
the GraphicPrinter interface. (I just made this up, but something like this could be a
standard JINI interface name). The they would know that the proxy that implemented
this interface would have a printBitmap method, and so the client could call that method.

Another possibility is that the proxy would have its own user interface, and so the client
machine wouldn’t have to know what the proxy does, other than that it displays an
interface to the user. So the client could search for services that have an attribute ”arcade
game”, download the proxy, and run it. Then it would be up to the (human) user to
interact with the interface; the user’s commands to the interface would be handled by the
proxy, which might modify the interface on its own, and might pass on data to the server.
Another possibility is controlling a remote digital camera, which the user could control
from an interface on the client machine.

CS 4513 8 week7-distobj.tex



Leasing

Leasing refers to the fact that instead of giving clients access to resources indefinitely,
servers grant permission to use their service for a fixed period of time (a lease). Leases can
be renewed, but only by explicit action of the client.

One way leasing is used is by the Lookup Service. From the standpoint of the Lookup
service, the servers that register with it are clients. The lease from the Lookup Service to
its clients (the JINI services) are for a fixed duration, and must be renewed periodically by
the servers. So if a service crashes, or if it’s removed from the system without a proper
shut-down (for example, someone unplugs the printer to remove it, so it can’t remove itself
from the Lookup Service), eventually it just disappears from the Lookup Server, and clients
will not be directed towards this non-existent service indefinitely. (In the RPC portmapper
for example, a registered service stay there forever unless it’s explicitly removed.) So
leasing is one way in which a Java community is self-repairing, increasing reliability.

Another way leasing is used is between a JINI service and its clients. The same principle
applies. Since the server only grants a lease for a fixed period of time. If the server dies,
the client will not be able to renew its lease after the next lease expiration, and the client
will have to go back to the Lookup Server to find another server to perform this service.
More self-healing, more reliability. Contrast this with what happens if a network printer
dies on LAN. On the CS system, the only way you know that the printer has died is that
your printing doesn’t appear. (You can actually check by running lpq —Pprintername, but
you have to think to do this.) The some administrator has to clear out the print queue and
re-start the printer. Much easier if we used JINI to connect the client and printer.

CS 4513 9 week7-distobj.tex



Remote Events

The Java event model can be used to allow services to notify clients when events of interest
occur. There is a Java interface RemoteEventListener that must be implemented by
objects that which to receive events, and single method in this interface, notify().
RemoteEventListener itself is a Remote interface, so notify can be invoked by remote
objects via RMI. This means that a server can invoke a method running on a client. (This
surely is a violation of the normal sense of what clients and servers can do — a good thing
because of the power it gives you in designing distributed applications.) Of course the client
has to be programmed to work correctly with the events that the server might invoke.

So what can you with remote events? Back to the example of the digital camera (the
client) looking for a printer (service). Suppose when the camera is placed on the network,
no appropriate printer is available on the network. (The camera queried the Lookup
Service and didn’t find a printer service.) The client could listen for an event, to be invoked
by the Lookup Service, to inform it when a printer becomes available. So the Print button
on the camera interface would be greyed-out when the camera starts up (because no printer
is available) and then would automatically be enabled when a printer becomes available.

Alternatively, a printer could trigger events on their clients when some unusual event
occurs, like out-of-paper, and the client could take appropriate actions (like relaying this
message to the user, or making the printer unavailable until the condition is corrected.

CS 4513 10 week7-distobj.tex



Transactions

A problem with any kind of sequence of operations (whether distributed or not) is that
there might be a problem if only some of the actions in the sequence are completed. For
example, suppose you wanted to transfer $100 from your checking account to your savings
account. This would be accomplished by a series of actions like this:

1. Subtract $100 from your checking account
2. Add $100 to your savings account

You would be fairly upset if step 1 got executed but the machine crashed before step 2 got
executed — you would be out $100. The general computer science soluntion to this
problem is to use transactions: transactions assure that all or none of the steps within a
transaction are executed. From a transactional point of view, it doesn’t matter whether all
or none of the steps are performed — either one leave the system in a consistent state. (If
you’ve taken the database course, you learned all about transactions. This isn’t the place
to go over how transactions are executed.)

In a distributed system, there are even more chances for things to go wrong — you can
have serveral servers involved in processing the steps, servers can go down, messages can
get lost, etc. JINI provides a transaction-based interface, TransactionParticipant, which
allow a client and server to implement transaction-based series of actions. The
TransactionParticipant interface doesn’t actually provide the transaction code, but just
provides a mechanism for the programmer to implement transactions.

CS 4513 11 week7-distobj.tex



Linda Systems

One classic shared data approach taken by Linda system and successors.

Immutable data approach typified by Linda-type systems, which use a tuple space. Tuples
consist of a sequence of one or more typed data fields such as <"fred", 1958>,
<4, 3.2, "xyz">.

Operations:

• read, take—block until a tuple is available that match tuple criteria such as
<String, 1958>. take removes tuple from space.

• write—adds tuple to space

Example:

<s,count> = myTS.take(<"counter", integer>);

myTS.write(<"counter", count+1>

CS 4513 12 week7-distobj.tex



JavaSpaces

Shared data space.

Service that can be implemented in Jini. See Fig 12-15.

A Linda-like shared dataspace. Can be used for coordination of processes.

Tuples are typed references to Java objects (name, value pairs). Tuple contents are
marshaled when stored into JavaSpace.

Can have multiple instances of a tuple. See Fig. 12-14. Can have multiple versions of a
tuple.

Need a to supply a template when reading a tuple. Only instances matching the template
are returned. Can have the client block until a matching tuple becomes available.

Can use events in combination with JavaSpaces.

CS 4513 13 week7-distobj.tex


