
Clock Synchronization

Figure 5-1 as motivation

Lamport’s paper

Section 17.1 SGG

“Time, Clocks, and the Ordering of Events in a Distributed System” by Leslie Lamport.
Communications of the ACM. July 1978.

A program is a sequence of events. Partial ordering “happened before” relationship.

For events a, b, a → b means:

1. a comes before b in the same process

2. sending of message at a to b in another process

3. transitive. a → b and b → c implies a → c

Two events are concurrent if it is not known if one happens before the other.

a → b means it is possible for event a to causally affect event b.

See picture from paper.

CS 4513 1 week6-synch.tex



Logical Clocks

Can we set up a logical clock to guarantee a partial ordering of events?

Assigning numbers to events:
Ci(a) number of event a in process i (one processor’s clock)
C(b) = Cj(b) for process j containing event b (set of all clocks)

Clock Condition:
a → b implies C(a) < C(b)

Note that a 6→ b and b 6→ a does not imply C(a) = C(b).

C1: a → b in process i implies Ci(a) < Ci(b)
C2: passing message from i, event a to j, event b implies Ci(a) < Cj(b).

Implementation Rules:

1. Each process Pi increments Ci between any two successive events (statements).

2. Messages contain a timestamp Tm = Ci(a).

Upon receiving a message Pj sets Cj = max(Cj + 1, Tm + 1)

Provides a partial ordering of causally related events.

Can extend to a total ordering of events by assigning processors a priority to break ties
with the clock.

Can use total ordering to ensure mutual exclusion in a distributed environment.

CS 4513 2 week6-synch.tex



WWV clock

Fort Collins, CO has atomic clock built on vibratiions of Cesium 133 atom.

Universal Coordinated Time (introduction of leap seconds). Can have a receiver on the net
tuned to WWV.

Physical Clock Synchronization

Want to define a constant ρ such that the maximum drift rate of the clock (C) is bounded.

1 − ρ ≤ dC/dt ≤ 1 + ρ

Want maximum drift between two clocks to be δ, must be resampled every δ/2ρ (each
clock can drift ρ amount in opposite directions)

CS 4513 3 week6-synch.tex



Cristian’s algorithm. Send a message to the time server and get back a reply. Adjust
clock to the time. Fig. 11-6. Considerations:

• Cannot adjust clock backwards (rather must move the clock gradually backwards)

• Propagation delay of message is at least (T1 − T0)/2. Could also add in processing
time if known.

• Problem if central time server fails. Temporarily lose service.

Berkeley algorithm. Time server periodically computes a network time and sends it out
to everyone else. Does not synchronize to an external time.

Averaging algorithms. Broadcast time—decentralized. Could also pick a random node
to send to, less overhead, but slower convergence.

Multiple External Time Sources. Intersect them, average, and throw out any outlyers.
Fig. 11-8 for example of OSF’s DCE approach. Universal Coordinated Time (UTC).

Network Time Protocol (NTP). Standardized time protocol. Use a hierarchy of servers
with those at the top receiving UTC directly (Fig 10.3) Three modes:

1. multicast—on a LAN

2. procedure call—like Cristian’s algorithm

3. symmetric—servers communicate and maintain a timing association

Protocol uses symmetric mode to calculate offset o and delay d between two clocks (Fig
10.4).

CS 4513 4 week6-synch.tex



Mutual Exclusion

Can use Lamport’s algorithm.

Look at centralized algorithm. Fig. 11-9.

Distributed algorithms. Ricart-Agrawala have an updated version of Lamport’s algorithm.

Token Based Algorithms

Create a ring (logical or physical) and pass a token between the nodes. If the node needs
the critical section then it grabs the token.

Suzuki-Kasami’s Broadcast algorithm—keep a vector of current state and broadcast
requests. Each machine broadcasts a request for the token when it is needed.

Singhal has a heuristic improvement to only send to the sites it thinks may have the token.

Comparison

Look at Fig 11-12.

CS 4513 5 week6-synch.tex



Election Algorithms

Used when a unique process needs to be distinguished to play a particular role.

One process may call an election when the need arises.

Elections must work in the face of multiple processes calling an election.

Bully Algorithm

Assumes that a process knows about other processes with a higher identifier.

A process holds an election to elect a leader. The election is held as follows:

1. P sends an election message to all processes (sites) with a higher number.

2. If no one responds with an answer message, P wins and becomes the leader.

3. If a higher-up answers then it takes over and starts an election. P is done.

4. Winner sends a coordinator message to all nodes indicating it has won.

Ring-Based

Similar to bully algorithm in trying to elect the highest numbered node.

Any node can start and marks itself as a participant (vs. non-participant) in an election. It
puts its identifier in the election message. Successive nodes mark themselves as
participants and if they have a greater value then they substitute their id in the elected
message, otherwise they just pass the value on.

When the receiver gets its id back then it is the coordinator and sends an elected message.
The other nodes use this message to mark themselves as non-participants.

Notion of participation is used to quelch other elections. At worst the protocol could take
3n − 1 messages (n − 1 to find leader, n before leader sees its id again and n to send
around elected message).

Show a picture with 3-9-15-6-12-18 (start with 3).

CS 4513 6 week6-synch.tex



Termination Detection

How to know when a distributed computation (election, deadlock detection, distributed
query) terminates??

Huang, 1989.

Use a weighting algorithm with a controlling agent. Initially the controlling agent has a
weight of one and all other nodes have a weight of zero. Show picture.

Invariant: sum of weights in the system is always one.

Algorithm

1. When a computation is sent by a process with weight W to another process then
divide W into W1 + W2. Reassign W = W1 and send W2 to P.

2. On receipt of message, the process P adds the weight to its current weight.

3. If a process is no longer active then it sends its entire weight W to the controlling
agent.

4. On receiving a message the controlling agent adds the weight to its current value.
When the weight returns to one the computation is terminated.

CS 4513 7 week6-synch.tex


