
Preliminary

Grading Policy, Course Syllabus

Operating system concepts you should already know:

• process management and scheduling

• memory management

• process synchronization

• interprocess communication

• input/output devices

This course covers file systems and distributed systems. Also might discuss some advanced
operating systems topics such as multiprocessor operating systems and real-time systems.

Look at concept map (topics/innovations that have effected changes in distributed
systems).

CS 4513 1 week1-files.tex



Look at general issues then at specific file systems.

File Management

A file is a collection of permanent data that has a name assigned to it.

The data is permanent in the sense that it remains in existence after the process that
creates it has terminated, and remains in existence until explicitly deleted. Moreover, the
data remains in existence across machine shut-downs/crashes.

Note: files are abstract entities provided by the operating system, not physical entities
provided by hardware.

The operating system defines:

1. how files are named

2. operations used to access them

3. how files are protected for these operations

4. access methods

5. their physical representation on permanent storage

CS 4513 2 week1-files.tex



Naming

A name may be divided into components. File names often consist of a basename and
extension. The basename names the file, while the extension indicates the type of data the
file contains.

Organizing files into types is convenient because it allows similar programs to be grouped
together.

In addition, it allows applications to reject operations on files of the “wrong type”. Also to
guide to correct application to operate on a file when it is opened.

Unix/Linux has the idea of “magic numbers” stored at the beginning of a file to indicates
some types—executable, shell script, PostScript, etc.

However, should the operating system require and force all files into this mold?

Should the operating system restrict the length and format of filenames?

MS-DOS used a 8.3 style for names. Limit on file portion is 255 for Windows NT file
system (actually keeps both long and short name). Unix variants have a large or no limit
on size.

Directory

A directory (folder) is a list of filenames, along with information about the file such as:

• a pointer to its physical location

• access permissions

• owner

• size

Often, operating systems store the contents of directories in files, and the file manager
treats those files specially.

CS 4513 3 week1-files.tex



Namespace

In a flat namespace all files are contained in a single, global directory.

Disadvantages:

• no two files can have the same name, forcing users to make up long, silly names

• searching for a file in the directory might be expensive, because the directory
contains many file names.

• the cost of providing features such as file name expansion (e.g., “*” in Unix variants)
becomes expensive

In a hierarchical file system, directories may contain pointers to other directories. All
directories can be accessed by starting at the root directory, and names consist of a
sequence of directories followed by the file name.

Now, file names can be specified as full path names, in which case the file is named relative
to the root of the directory tree. The names of directories are separated by a reserved
character, such as “/” (e.g., /usr/include/stdio.h) in Unix, “
” in DOS/Windows, “>” in MULTICS, “:” in MAC OS/VMS.

CS 4513 4 week1-files.tex



Relative Names

Alternatively, file names can be relative names. That is, they are accessed with respect to
the current or working directory. (Needed in a hierarchical namespace).

The working directory is associated with each process, and a system call is used to change
to another working directory.

Use of Namespace

Note: the namespace is a fundamental aspect of the operating system because users access
objects through the namespace.

In Unix/Linux, for instance, devices are in the same namespace with files. Each device foo
is given a corresponding entry of /dev/foo in the filesystem.

Thus, users can read and write from terminals by opening (say) /dev/tty01, and issuing
reads and writes. Device independence (of course!) translates the high level operations into
the device specific ones.

As another example, programs can read and write memory through the devices /dev/mem
and /dev/kmem.

MS-DOS/Windows variants include the device as part of the name (A:\MYDOC.DOC) so the
name is not device independent. Floppy drive, CD-ROM, hard drive, zip drive, ...

CS 4513 5 week1-files.tex



Aliases and Indirect Files

Some systems allow a file to be referenced by several aliases. Aliases allow the use of
shorter names for files that do not belong to one directory.

Typically, the operating system supplies a system call of the form:

alias(oldname, newname)

Note: the alias routine does not create a new copy of the file, just another way of naming it.

In Unix/Linux, this alias is called a “hard link” and is created with the ln command
(invokes link() system call). Example:
ln curname aliasname

Aliasing brings up two issues:

1. deletion — if the file is deleted under one alias, should the file be deleted for all
aliases?

Finding all of a file’s aliases could be difficult, or might force the operating system to
maintain a special table for aliases.

Alternatively, a reference count could be associated with every file, with a count of
the number of aliases. Deleting an alias decrements the reference count, deleting the
file only if the count goes to zero.

2. accounting — who should be charged for space allocated to the file?

We could charge the original creator of the file, but this is unfair, especially if the
original creator deletes file alias.

Best alternative is to charge each alias owner equally.

Special aliases

One important use for aliasing: how can a process read the directory corresponding to the
current working directory?

In Unix(Windows), the mkdir (CreateDirectory()) system-call/command creates
directories. It also creates two aliases in the new directory:

1. “.” — an alias for the newly created directory itself

2. “..” — an alias for the directory in which the new directory was created.

Note: no special processing is needed to handle “.” and “..”. Also in Windows file systems.

CS 4513 6 week1-files.tex



Indirect Files

Unix also provides indirect files, files that contain (nothing but) the name of another file.
The operating system provides a system call of the form:

Indirect(iname, file)

In Unix/Linux, this alias is called a “symbolic link” (or soft link) and is created with the ln
-s command Example:
ln -s curname symlink

In Windows OS is called a shortcut.

Use of indirect files raise the following issues:

1. deletion — deleting indirect file iname does not delete file, but deleting file renders
iname useless. Creating name again makes iname usable again.

2. accounting — the owner of indirect file iname pays a miniscule amount compared to
the owner of file

3. multiple indirection — if indirect files can name other indirect files, can we have
recursive names?

To prevent infinite loops, systems typically limit the number of indirect links to a
small number such as 5.

4. interpretation of indirect names — with respect to which directory should relative
names be interpreted?

Unix/Linux interprets the name relative to the directory containing indirect file.

CS 4513 7 week1-files.tex



Unix/Linux Link Example

% ls -l

total 1

-rw-rw-r-- 1 cew system 9 Mar 15 11:08 origfile

% ln origfile linkfile # create hard link

% ls -l

total 2

-rw-rw-r-- 2 cew system 9 Mar 15 11:08 linkfile

-rw-rw-r-- 2 cew system 9 Mar 15 11:08 origfile

% ln -s origfile symlink # create symbolic link

% ls -l

total 2

-rw-rw-r-- 2 cew system 9 Mar 15 11:08 linkfile

-rw-rw-r-- 2 cew system 9 Mar 15 11:08 origfile

lrwxr-xr-x 1 cew system 8 Mar 15 11:10 symlink@ -> origfile

CS 4513 8 week1-files.tex



Types of Access

When considering objects of the type files, devices, and directories, the following access
rights provide a good base:

1. Read — read the object

2. Write — write the object

3. Append — add to the end of the object

4. Execute — execute the file (but can’t read it!)

5. Delete — remove the object

6. Modify Rights — change the access list of the object (owner only)

7. Set Owner — specify who owns the file (administrator)

One aspect of access control concerns when access rights are verified. Possibilities:

1. check each time the object is accessed; however, the cost may be quite high

2. for objects “opened” or “closed” before and after access, only perform check at open
time.

While more efficient, it cannot change the access rights for a process that has already
opened the object.

CS 4513 9 week1-files.tex



Access Control

Instead of focusing solely on file access, we will consider the more general case of
controlling access to arbitrary objects.

An object provides operations through which a service is invoked. A process can invoke an
operation only if it has an appropriate access right or privilege to do so.

We can represent access rights by an access matrix.

1. Rows in the matrix represent the rights of a user (process)

2. columns denote protections associated with objects

3. a matrix entry represents a process’s privileges regarding a specific resource

The following matrix gives sample protections:

/dev/console f̃red/prog.c f̃red/ltr.txt /usr/ucb/vi
Fred’s P RW RW RW X
Fred’s Q RW RW RW X
Jane’s P RW R X

All three processes can execute /usr/ucb/vi, but none can read or write it.

Fred’s processes P & Q have the same permissions. Usually, a process inherits its access
rights from its parent.

Jane can read (but not write) f̃red/prog.c.

The access matrix is a conceptual framework and is rarely implemented as an actual
matrix. (Why?) Must have an entry for each object and user. Wasteful.

CS 4513 10 week1-files.tex



Capability Lists

One way to partition the matrix is by rows, storing the access rights of a user together in a
data structure called a capability list.

Using our previous example, Fred’s list would be:

Fred—>/dev/console(RW)—> f̃red/prog.c(RW)
—> f̃red/letter(RW)—>/usr/ucb/vi(X)

Jane—>/dev/console(RW)—> f̃red/prog.c(R)
—> f̃red/letter()—>/usr/ucb/vi(X)

This arrangement has several drawbacks:

1. If the list has an entry for each object, many entries will indicate no access. Better to
list just those objects to which the user has some access.

2. The set of objects in a list may be large, especially for privileged users. Searching
long lists is expensive.

3. An initial list must be created for new users. What should the list contain?

4. What about new objects?

CS 4513 11 week1-files.tex



Access Lists

The dual of capability lists is access lists, which divide the access matrix by columns. The
access list is associated with objects rather than with users.

1. /dev/console—>fred(RW)—>jane(RW)

2. f̃red/letter—>fred(RW)

3. f̃red/prog.c—>fred(RW)—>jane(R)

4. /usr/ucb/vi—>fred(X)—>jane(X)

Disadvantages:

1. set of users likely to be large

2. many processes will have identical rights

Solution: group users into classes. Each member in a class has the same access privileges
for the object.

CS 4513 12 week1-files.tex



Systems

Unix approach partitions into three classes:

1. owner of the file

2. users in the same group as the owner

3. other users

For instance, the file f̃red/prog.c might be given access rights:

self RW
group R
others no access

In addition to groups, Windows NTFS allows individual users to be added to the access list
of an object. Thus, f̃red/prog.c might be given the following access list:

self RW
group R
others no access
bob R

Approach was used in Multics.

CS 4513 13 week1-files.tex



Access Control for Directories

The semantics of access control are fairly straightforward in the context of files. What
about directories?

Here is one possibility:

• read — determine the names in the directory

• write — modify the directory contents (add, delete names)

• append — add new files to the directory

• delete — remove the directory itself

• modify rights — modify the access rights

• set owner — change the owner of the directory

• execute — open files in the directory. A file can only be opened if the user has
execute permission in all directories of the file name

Note: should execute permission be required for the full path name? What if relative
names are given?

CS 4513 14 week1-files.tex



Access Control for Aliases and Indirect Files

If a file has several aliases, should the file have different permissions for each name?

If permissions are associated with the directory entry, the answer is yes. However, this
raises security concerns. because it becomes more difficult to verify all possible permissions.

If permissions are associated with the file itself, only one set of permissions can exist. This
approach is taken by Unix/Linux.

How should the permissions of indirect files (symbolic links) be interpreted?

1. with respect to the indirect name?

2. with respect to the file it points to?

3. with respect to both

The former approach becomes awkward because the interpretation of the modes also
depends on whether the indirect link points to a file or a directory.

Unix/Linux adopts the middle approach, ignoring protections of the indirect file (symbolic
link).

CS 4513 15 week1-files.tex



Access Methods

An access method defines the way processes read and write files.

• Sequential access. The entire file is read (or written) from start to end sequentially.
The system associates a read/write mark with each file that is advanced on each
access.

Where should the mark be stored?

– with each process — only the process can modify the file mark

– with the file descriptor — multiple processes concurrently accessing the file share
the same descriptor—Unix/Linux approach.

Disadvantage:

∗ mark may change between accesses (non-determinism)

Advantages:

∗ useful when writing output to a common file or device (e.g., terminal)

∗ replicated servers might fetch requests from a common port

• Direct access. Allow the user to position the read/write mark before issuing reads
and writes to a file. Arbitrary data can be written to the middle of the file without
destroying data before or after the new data. The system provides a system call of
the form:

position(fdescriptor, offset)

seek() call in Unix/Linux.

• Memory mapped access. Multics, Digital Unix. Linux. The contents of a file are
mapped into the address space of the process. Processes then access file contents
through normal memory operations. See mmap() and munmap() system calls.

Then access to the file contents is managed by the virtual memory system where the
contents of the memory are backed by the mapped file.

• Structured or typed files. Consist of streams of records. The owner of the file describes
the records of the files and the keys used to access individual records.

Different than treating files as unstructured, byte streams. Some applications, such
as databases, prefer viewing files as repositories of records that can be accessed with a
key.

CS 4513 16 week1-files.tex


