CS 4513 Distributed Computing Systems WPI, B Term 2005
Craig E. Wills Project 1 (35 pts)
Assigned: Friday, October 28, 2005 Due: Tuesday, Novembe2d05

Introduction

Operating systems maintain a number of attributes abouea Tiypically file systems support
attributes such as access permissions, size and last natidificime. On a Unix/Linux system,
information about the standard set of attributes for a file lsa obtained using th&tat() system
call. The standard Linux file systerext2 supports additional attributes for a file that can be set.
See the Linux man pages for the commalsdstr andchattrto see more details on these additional
attributes.

In addition to supporting standard file attributes, the Be@png System supports user-defined
attributes [1]}. This feature allows users to attach (attribute,valuejsp@i a file. For example,
if each mail message a user receives is stored in its own figa & “From” attribute could be
attached to each file. The presense of this feature alloviesliwith a given attribute value to be
easily identified. User-defined attributes also allow infation to be stored about a file in addition
to its content. For example, the icon position of the file iniadew system, or the URL source of
a downloaded Web document. In this project you will be addiser-defined file attributes to the
Linux file system and creating user-level programs to setusedhese attributes.

Creating User-Defined File Attributes

The first part of the project involves no kernel modificationdéu will be creating a user-level
routine with the following name and definition:

ret = SetAttribute(char *fil enanme, char *attrnane, char *value, int size)

The SetAttribute()routine will take the name of a file, an attribute name, antaite value
and the size of the attribute value. The attribute value fideaannot be stored with the contents
of the file, but needs to be stored in a separate location. H®ptoject we will store all user-
defined attributes in an “attribute” directory, where eadwiithin the directory corresponds to a
user-defined attribute and the contents of an attributer@etee value of the attribute.

We will use the file name in creating the name of the attributectbry. For a given file, the
attribute directory is created by prepending the file nanté widot (*.”) and appending the file
name with_at t r. Thus the attribute directory for the fifeoo will be . f oo_attr. You can
create directories as needed with thidir() system call. Your routine should return an error if
attempting to set an attribute for a file already beginnintpwf'. It is possible to set attributes for
directories as well as regular files.

An example use dBetAttribute()s:

1The Be File System and book were written by a WPI alumnus Dian@iampaolo.

1

ret = SetAttribute("foo.c", "Programer”, "Craig WIIs",
strlen("Craig WIIs"));

This routine creates the attribute directorfyoo. c_at t r and the attribute file
.foo.c_attr/Programer with the contents ofCrai g W1 | s”. You should use the sys-
tem callsopen() close() read()andwrite() for accessing attribute file contents as other I/O routines
may not be available in the kernel. The file permissions ferattribute file should match those
of the file. The routine should return a -1 if the file does nasear the attribute file cannot be
created. If the routine succeeds then it should return tineben of bytes written to the attribute
file. This value should be the same as the last argument.

As a convenience in using and testing attributes, you shotité a program, which compiles
to a command callegetattr. It has the following syntax:

setattr attr=value file(s)
Two example uses for this command are:

% setattr Type=header foo.h
% setattr "Programmer=Craig WIlIls" *.¢c *.C *.h

The first example sets the user attribulg/ pe” for the file f 00. h and the second example
sets the attributePr ogr anmrer ” for all C/C++ source and header files in the current dirgctor
Note that the shell will expand the wildcard™and your program will iterate through this list
of files and callSetAttribute()for each file. Also note that any spaces in the attribute valilie
requires the use of quotes for the shell to treat it as onenaggti

This implementation for user-defined attributes is simitathat in the Be Operating System
in terms of storing the attributes in an attribute directas/regular files. However, in the Be
Operating System the inode of the attribute directory isestan a file’s inode rather than actually
using a named directory. Also the BeOS optimizes “smalitattes” by storing their value in the
same disk block as the inode of the file. See [1] for more detailthe Be OS file system.

Listing User-Defined File Attributes

Once you can create user-defined attributes you need a noa@tisdve and display these attributes
for a file. The system routine you will need to write is giverfatows:

ret = GetAttribute(char *fil ename, char *attrnanme, char *buf,
i nt bufsize)

where an example use of this routine is

char buf[1024];
ret = GetAttribute("foo.c", "Programer"”, buf, 1024);

2

The routine stores the value of the attributebimf and returns the number of bytes stored
(maximum is the given buffer size). The routine returns &f the file or its attribute cannot be
found.

You should also create a command calisthttr, which has the following syntax:

listattr attr file(s)
Two example uses for this command are:

%listattr Programmer *.C
filel.C Progranmer=Craig WIlIs
file2.C Progranmer=Craig WIlls
%listattr ALL *.h

bar.h Programer=Craig WIls
foo.h Progranmer=Craig Wlls

f 0oo. h Type=header

The first example prints the value of the user attribledgr amrer ” for all C++ source files.
The output shows file name, attribute name and attributeevale second example introduces a
special attribute namediLL”. When used witHistattr, the output should be the values of all at-
tributes associated with each file. This special attribsitenplemented as a special caseGstAt-
tribute(), where passingALL” as the attribute will return a colon-separated list of dtlibute
namesfor the file. In the case dbar . h, the value of the attributeALL” is “Pr ogr anmer”
while for f 00. h, the value of the attributeALL” is “Pr ogr anmrer : Type”. The listattr will
need to iterate through this list of attribute names andenedrindividual attribute values. You can
use a routine such atrtok()to parse the colon-separated string.

Implicit File Attributes

In addition to attributes explicitly set by the user for a,fileur GetAttribute(youtine also needs to
support implicit attributes for a file. These attributeslsibele, Ui d, G d, Si ze,Ati ne,M i ne
andCt i ne. Values and descriptions for these attributes can be aataising thestat() system
call and its man page. If one of these implicit attributesveq to GetAttribute()then your routine
should get the appropriate value, which will be an integer @eamvert the value to a string to be
stored in the buffer. The conversion from integer to striag be done using thgprintf(). For
example, the following example stores the valu@omin buf as a string.

int num= 5623;
char buf[128];
sprintf(buf, "%", nunm;

These attributes should also be included in the list of namte=n the attribute nameALL” is
given. You should support the attributAl“L USER” to only return a list of user-defined attributes.
Thus the expected output for thstattr command with the ALL” attribute is:

3

% listattr ALL foo.h
f 0o. h Ui d=507

foo.h G d=100

foo.h Size=340

foo.h Ati me=1004105714

foo.h Minme=1004105712

foo.h Ctime=1004105712

foo.h Programmer=Craig Wlls
foo. h Type=header

You are welcome to convert the times to string format ustigne() instead. Note that your
SetAttribute(routine should return an error if a program tries to set anthe$e attributes for a
file.

System Calls

Completion of thesetattrandlistattr commands using user-level routirestAttribute((jandGetAt-
tribute() is worth 15 of the 35 points for the project. For an additiatapoints on the project you
need to take th8etAttribute(andGetAttribute(routines and push them into the kernel as system
calls.

Their system-call definitions are the same as their resmecer-level routine definitions.
These should be straightforward system calls to add to thed Virtual File System, although note
that calls to other system calls within the kernel need tore@gnded with §ys” so that making
a call tomkdir() is done usingsysmkdir(). You should pay careful attention to the Fossil Lab
Web page on “Adding a System Call to Linux” and at how similgtem calls are implemented,
particularly in transferring data to and from kernel space.

Once you have added these system calls, getaittrandlistattr should perform exactly the
same after recompilation with the system calls in place. 3ould not link in your user-level
versions of these routines at this point.

Note: When writing kernel code, you will want to print messages ttboat, as you do in
printf(). Since many parts of the kernel may not have access to the Igidary, kernel devel-
opers wrote their own version gdrintf() called printk(). printk() basically behaves the same
as printf(), in terms of formatting. Furthermoreyrintk() also writes messages to the log file
/var /| og/ messages, so you can view output there in case your modified OS crasties.
might add prefixes to yourintk() messages, such as "CEW: ” or "Fossil: ” so you can more eas-
ily pick out your messages from the log file. Be careful! If ymaveprintk() messages in a part of
the kernel that is accessed frequently it can fill up your legduickly. When this happens, your
system can become unstable. Check the size of your log fileg(lss-1) and the disk space that is
free (usingdu) frequently.

You are advised to take a conservative, incremental syrdtegleveloping these system calls
(and any kernel work). First focus on puttipgntk() statements into some of the key parts of the

Linux virtual file system (for calls such asat(), open() read()andwrite()) to build up confidence
as to where to add your modifications.

Removal of Attributes

Once your Linux kernel supports the creation and retrie/aker-defined attributes the next obvi-
ous step is to be able to remove attributes and to handlbwts correctly when files themselves
are removed. For removal of attributes, you need to creatthansystem call with the following
interface:

ret = RenoveAttribute(char *fil enane, char *attrnane)

This system call will remove a specific attribute for a givémdind delete the attribute directory
if this is the last user-defined attribute. Obviously nonéhef implicit file attributes can ever be
deleted and attempts to do so should return an error. If thbwte is “ALLUSER” then the call
should remove all attribute files and the attribute dirgcfor the given file.

You should also create a command calliedhttr, which has the following syntax:

rmattr attr file(s)

This user-level command will invoke tieemoveAttribute@all for each of the files in the list.

You also need to ensure that when a file is removed (systerardaik()) that any user-defined
attributes for this file are also removed. You will need to mpthe unlink() system call to take
this action. Thus the command foo.c¢ will remove the filefoo.cand any attributes associated
with the file.

You also need to investigate other commands that removeante files. Such commands are
mvandcp (there are others, but at the minimum you need to handle)hése can use the utility
straceto trace the list of system calls invoked for a command. Ttilgywill help you in tracking
which other system calls need to be modified to correctly leaattributes.

Additional Work

Completion of all portions up to this point define the basiobve for this project. These portions
are worth a total of 30 out of the 35 points for the project. tharfinal five points of the project,
you need to implement one of the following directions foriiddal work:

1. Improve the kernel implementation of user-defined attébufor this direction you could
modify the inode structure of the WPI file system (it is notgested you do so for all file
systems) so that the inode of the attribute directory ergryncluded as part of the file’s
inode. To avoid expanding the inode size, you could remogath i ne entry and replace
its space with the inode. You could also look to see howetktfile system organizes the
inode to include its support of attributes.

5

2. Create a new command queryattr to allow flexible queries fes thased on their attributes.
The syntax for the command is as follows. It should outpuffilles from the given list that
match the query.

gueryattr querystring file(s)

Examples of the types of queries you might support are (betsuinclude a description of
the exact syntax and features for your queries):

% queryattr ' Size>1000" *.c *.C

bar. c

f oobar. C

% queryattr 'Mine>1 day’ *

bar. c

foo.c

% queryattr 'Programmer=C*’ *.c *.C *.h
foo.c

foo.h

% queryattr *Minme>1 day && Programmer=C’ *
foo.c

3. Create an application that uses user-defined file attrinuTdgs application shouldlearly
take advantage of attributes in a way that would not be eaagédf-defined file attributes
were not supported.

Submission of Assignment

Details on submission of the project will be provided nearphoject completion date.

References

[1] Dominic Giampaolo.Practical File System Design with the Be File Systddorgan Kauf-
mann, 1999.

