
CS 4513 Distributed Computing Systems WPI, B Term 2005
Craig E. Wills Project 1 (35 pts)
Assigned: Friday, October 28, 2005 Due: Tuesday, November 15, 2005

Introduction

Operating systems maintain a number of attributes about a file. Typically file systems support
attributes such as access permissions, size and last modification time. On a Unix/Linux system,
information about the standard set of attributes for a file can be obtained using thestat()system
call. The standard Linux file system,ext2, supports additional attributes for a file that can be set.
See the Linux man pages for the commandslsattr andchattr to see more details on these additional
attributes.

In addition to supporting standard file attributes, the Be Operating System supports user-defined
attributes [1]1. This feature allows users to attach (attribute,value) pairs to a file. For example,
if each mail message a user receives is stored in its own file, then a “From” attribute could be
attached to each file. The presense of this feature allows allfiles with a given attribute value to be
easily identified. User-defined attributes also allow information to be stored about a file in addition
to its content. For example, the icon position of the file in a window system, or the URL source of
a downloaded Web document. In this project you will be addinguser-defined file attributes to the
Linux file system and creating user-level programs to set anduse these attributes.

Creating User-Defined File Attributes

The first part of the project involves no kernel modifications. You will be creating a user-level
routine with the following name and definition:

ret = SetAttribute(char *filename, char *attrname, char *value, int size)

The SetAttribute()routine will take the name of a file, an attribute name, an attribute value
and the size of the attribute value. The attribute value for afile cannot be stored with the contents
of the file, but needs to be stored in a separate location. For this project we will store all user-
defined attributes in an “attribute” directory, where each file within the directory corresponds to a
user-defined attribute and the contents of an attribute file are the value of the attribute.

We will use the file name in creating the name of the attribute directory. For a given file, the
attribute directory is created by prepending the file name with a dot (“.”) and appending the file
name with_attr. Thus the attribute directory for the filefoo will be .foo_attr. You can
create directories as needed with themkdir() system call. Your routine should return an error if
attempting to set an attribute for a file already beginning with “.”. It is possible to set attributes for
directories as well as regular files.

An example use ofSetAttribute()is:

1The Be File System and book were written by a WPI alumnus Dominic Giampaolo.

1



ret = SetAttribute("foo.c", "Programmer", "Craig Wills",
strlen("Craig Wills"));

This routine creates the attribute directory.foo.c_attr and the attribute file
.foo.c_attr/Programmerwith the contents of “Craig Wills”. You should use the sys-
tem callsopen(), close(), read()andwrite() for accessing attribute file contents as other I/O routines
may not be available in the kernel. The file permissions for the attribute file should match those
of the file. The routine should return a -1 if the file does not exist or the attribute file cannot be
created. If the routine succeeds then it should return the number of bytes written to the attribute
file. This value should be the same as the last argument.

As a convenience in using and testing attributes, you shouldwrite a program, which compiles
to a command calledsetattr. It has the following syntax:

setattr attr=value file(s)

Two example uses for this command are:

% setattr Type=header foo.h
% setattr "Programmer=Craig Wills" *.c *.C *.h

The first example sets the user attribute “Type” for the file foo.h and the second example
sets the attribute “Programmer” for all C/C++ source and header files in the current directory.
Note that the shell will expand the wildcard “*” and your program will iterate through this list
of files and callSetAttribute()for each file. Also note that any spaces in the attribute valuewill
requires the use of quotes for the shell to treat it as one argument.

This implementation for user-defined attributes is similarto that in the Be Operating System
in terms of storing the attributes in an attribute directoryas regular files. However, in the Be
Operating System the inode of the attribute directory is stored in a file’s inode rather than actually
using a named directory. Also the BeOS optimizes “small attributes” by storing their value in the
same disk block as the inode of the file. See [1] for more details on the Be OS file system.

Listing User-Defined File Attributes

Once you can create user-defined attributes you need a means to retrieve and display these attributes
for a file. The system routine you will need to write is given asfollows:

ret = GetAttribute(char *filename, char *attrname, char *buf,
int bufsize)

where an example use of this routine is

char buf[1024];
ret = GetAttribute("foo.c", "Programmer", buf, 1024);

2



The routine stores the value of the attribute inbuf and returns the number of bytes stored
(maximum is the given buffer size). The routine returns a -1 if the file or its attribute cannot be
found.

You should also create a command calledlistattr, which has the following syntax:

listattr attr file(s)

Two example uses for this command are:

% listattr Programmer *.C
file1.C Programmer=Craig Wills
file2.C Programmer=Craig Wills
% listattr ALL *.h
bar.h Programmer=Craig Wills
foo.h Programmer=Craig Wills
foo.h Type=header

The first example prints the value of the user attribute “Programmer” for all C++ source files.
The output shows file name, attribute name and attribute value. The second example introduces a
special attribute named “ALL”. When used withlistattr, the output should be the values of all at-
tributes associated with each file. This special attribute is implemented as a special case byGetAt-
tribute(), where passing “ALL” as the attribute will return a colon-separated list of all attribute
namesfor the file. In the case ofbar.h, the value of the attribute “ALL” is “Programmer”
while for foo.h, the value of the attribute “ALL” is “Programmer:Type”. The listattr will
need to iterate through this list of attribute names and retrieve individual attribute values. You can
use a routine such asstrtok()to parse the colon-separated string.

Implicit File Attributes

In addition to attributes explicitly set by the user for a file, yourGetAttribute()routine also needs to
support implicit attributes for a file. These attributes areMode, Uid, Gid, Size, Atime, Mtime
andCtime. Values and descriptions for these attributes can be obtained using thestat()system
call and its man page. If one of these implicit attributes is given toGetAttribute()then your routine
should get the appropriate value, which will be an integer and convert the value to a string to be
stored in the buffer. The conversion from integer to string can be done using thesprintf(). For
example, the following example stores the value ofnum in buf as a string.

int num = 5623;
char buf[128];
sprintf(buf, "%d", num);

These attributes should also be included in the list of nameswhen the attribute name “ALL” is
given. You should support the attribute “ALLUSER” to only return a list of user-defined attributes.
Thus the expected output for thelistattr command with the “ALL” attribute is:

3



% listattr ALL foo.h
foo.h Uid=507
foo.h Gid=100
foo.h Size=340
foo.h Atime=1004105714
foo.h Mtime=1004105712
foo.h Ctime=1004105712
foo.h Programmer=Craig Wills
foo.h Type=header

You are welcome to convert the times to string format usingctime() instead. Note that your
SetAttribute()routine should return an error if a program tries to set any ofthese attributes for a
file.

System Calls

Completion of thesetattrandlistattr commands using user-level routinesSetAttribute()andGetAt-
tribute() is worth 15 of the 35 points for the project. For an additional10 points on the project you
need to take theSetAttribute()andGetAttribute()routines and push them into the kernel as system
calls.

Their system-call definitions are the same as their respective user-level routine definitions.
These should be straightforward system calls to add to the Linux Virtual File System, although note
that calls to other system calls within the kernel need to be prepended with “sys” so that making
a call tomkdir() is done usingsysmkdir(). You should pay careful attention to the Fossil Lab
Web page on “Adding a System Call to Linux” and at how similar system calls are implemented,
particularly in transferring data to and from kernel space.

Once you have added these system calls, yoursetattrand listattr should perform exactly the
same after recompilation with the system calls in place. Youshould not link in your user-level
versions of these routines at this point.

Note: When writing kernel code, you will want to print messages to stdout, as you do in
printf(). Since many parts of the kernel may not have access to the stdio library, kernel devel-
opers wrote their own version ofprintf() called printk(). printk() basically behaves the same
as printf(), in terms of formatting. Furthermore,printk() also writes messages to the log file
/var/log/messages, so you can view output there in case your modified OS crashes.You
might add prefixes to yourprintk() messages, such as ”CEW: ” or ”Fossil: ” so you can more eas-
ily pick out your messages from the log file. Be careful! If youhaveprintk() messages in a part of
the kernel that is accessed frequently it can fill up your log file quickly. When this happens, your
system can become unstable. Check the size of your log file (using ls -l) and the disk space that is
free (usingdu) frequently.

You are advised to take a conservative, incremental strategy for developing these system calls
(and any kernel work). First focus on puttingprintk() statements into some of the key parts of the

4



Linux virtual file system (for calls such asstat(), open(), read()andwrite()) to build up confidence
as to where to add your modifications.

Removal of Attributes

Once your Linux kernel supports the creation and retrieval of user-defined attributes the next obvi-
ous step is to be able to remove attributes and to handle attributes correctly when files themselves
are removed. For removal of attributes, you need to create another system call with the following
interface:

ret = RemoveAttribute(char *filename, char *attrname)

This system call will remove a specific attribute for a given file and delete the attribute directory
if this is the last user-defined attribute. Obviously none ofthe implicit file attributes can ever be
deleted and attempts to do so should return an error. If the attribute is “ALLUSER” then the call
should remove all attribute files and the attribute directory for the given file.

You should also create a command calledrmattr, which has the following syntax:

rmattr attr file(s)

This user-level command will invoke theRemoveAttribute()call for each of the files in the list.
You also need to ensure that when a file is removed (system callunlink()) that any user-defined

attributes for this file are also removed. You will need to modify the unlink() system call to take
this action. Thus the command “rm foo.c” will remove the filefoo.cand any attributes associated
with the file.

You also need to investigate other commands that remove or rename files. Such commands are
mvandcp (there are others, but at the minimum you need to handle these). You can use the utility
straceto trace the list of system calls invoked for a command. This utility will help you in tracking
which other system calls need to be modified to correctly handle attributes.

Additional Work

Completion of all portions up to this point define the basic objective for this project. These portions
are worth a total of 30 out of the 35 points for the project. Forthe final five points of the project,
you need to implement one of the following directions for additional work:

1. Improve the kernel implementation of user-defined attributes. For this direction you could
modify the inode structure of the WPI file system (it is not suggested you do so for all file
systems) so that the inode of the attribute directory entry is included as part of the file’s
inode. To avoid expanding the inode size, you could remove thea_time entry and replace
its space with the inode. You could also look to see how theext2file system organizes the
inode to include its support of attributes.

5



2. Create a new command queryattr to allow flexible queries for files based on their attributes.
The syntax for the command is as follows. It should output thefiles from the given list that
match the query.

queryattr querystring file(s)

Examples of the types of queries you might support are (be sure to include a description of
the exact syntax and features for your queries):

% queryattr ’Size>1000’ *.c *.C
bar.c
foobar.C
% queryattr ’Mtime>1 day’ *
bar.c
foo.c
% queryattr ’Programmer=C*’ *.c *.C *.h
foo.c
foo.h
% queryattr ’Mtime>1 day && Programmer=C*’ *
foo.c

3. Create an application that uses user-defined file attributes. This application shouldclearly
take advantage of attributes in a way that would not be easy ifuser-defined file attributes
were not supported.

Submission of Assignment

Details on submission of the project will be provided near the project completion date.

References

[1] Dominic Giampaolo.Practical File System Design with the Be File System. Morgan Kauf-
mann, 1999.

6


