CS 4513 Distributed Computing Systems WPI, B Term 2005
Craig E. Wills Project 2 (35 pts)
Assigned: Thursday, November 17, 2005 Due: Thursday, December 8, 2005

Important: This project is to be done by each student on an individual basis. There is no
group work on this project.

Introduction

The overall goal of this project is to build a distributed file system using Sun RPC or Java
RMI for distributed communication between the client and the server. Your file server will
serve directory and file contents of the underlying Unix file system. You will not build on
the file system modifications you created for the last project and will not need to modify the
kernel for this project. You may use either the CCC or Fossil Lab machines for this project.

Problem

Distributed file systems allow local clients to access files and directories on remote servers.
As discussed in class there are many issues in building a distributed file system and many
approaches that can be taken to address these issues. For this project you will be building a
distributed file system client and server. These processes will communicate using either Sun
RPC or Java RMI. The client will handle file system operations requests made by a user,
translate them to appropriate remote procedure calls and print the result of each request.
The initial current working directory for the server should be the Unix directory from which
the server is started.

Operations

The project sets forth a number operations that users will make using a command line
interface. Each operation will translate into one or more RPC (or RMI) calls. The following
defines the set of directory and file operations that your client/server must support. The
suggested RPC (or RMI) function call(s) for each operation are also shown in the form:

output_type function_name(input_type)

Directory Operations

All directory operations are with respect to the current directory (“.”) unless the directory_name
begins with a “/” in which case a full path is specified. You need to implement the following
directory operations:

e getdir



string getdir(void)

This function returns the current working directory as maintained by the remote server.
Use getwd() if using C/C++ or the getAbsolutePath method of the File class if using
Java.

e cd directory_name
boolean changedir(string)

This function changes the current working directory to the named directory on the
server. The server should make sure the function succeeds. Use chdir() if using C/C++
or if using Java you will need to construct the new full path and test its validity with
getAbsolutePath.

o filecount
int filecount(void)

This function returns the count of files and directories in the current directory. This
count should include both visible and hidden (beginning with a “.”) entries in the
current directory.

o s [-l] [directory-name]

boolean openlist(string)
direntry nextlist(void)
boolean closelist(void)

The Is and Is -I operations should produce output for all files in the current direc-
tory similar to the commands [s and [s - (respectively) in Unix. Unlike the Unix Is
command these operations will include all entries beginning with a “.”. If the direc-
tory_name argument is missing then the current directory (“.”) should be used. If
the -l option is omitted then the list of files should be given one per line. The Is -/
operation should print the file name, its size in bytes and its last modified time. Both
Is and [s -1 should append a “/” to the end of the file name if it is a directory. It is
not necessary to list the files in any particular order.

Your client should translate the s operation into a series of function calls to the server
(the server must maintain state between client calls). The openlist() call opens
the directory for reading. If the openlist() call is successful then the nextlist ()
call should be repeatedly invoked to obtain the next entry in the directory. The
information returned for each call should be a direntry structure that you define
containing the entry name, a flag indicating whether it is a directory, its size in bytes



and its last modified time. When the last list entry has been read, your client should call
closelist. If you are writing in C/C++, your server should use the Unix library calls
opendir(), readdir() and closedir() (see man pages). If you are writing in Java, your
server should use the File class and its methods such as isDirectory(), lastModified(),
length() and list().

Sequential Access File Operations

Your program should support two file operations that access a local and remote file in
sequential manner:

e put localfile [remotefile]

boolean openfiletowrite(string)
boolean nextwrite(block, int)
boolean closefile(void)

This operation should copy the contents of a local file (on the client) to a remote file
on the server. If the optional remotefile name is not given then the remote file name
should be the same as the local. Beware if the client and server are executing from
the Unix same directory. The operation should be translated into a series of remote
function calls to open the remote file for writing then write successive blocks of data
read from a local file (assume a block is 512 bytes long and that is the maximum size
that can be written in one call). When the local file contents have been transferred
then the closefile() function should be called. Note that if using RPC you should
not declare the block type as a string, but rather should used the type opaque, which
will cause the RPC mechanism to not do run-time interpretation of the sent data.

o get remotefile [localfile]

boolean openfiletoread(string)
int,block nextread(void)
boolean closefile(void)

This operation is similar except that data is transferred from a remote file through a
sequence of nextread() calls with each call needing the address of a block and the
count of bytes returned. If the count is zero then the entire remote file has been read.



Random Access File Operation

Your program should support one file operation that allows random portions of a remote
text file to be read:

e randomread remotefile firstbyte numbytes

boolean openfiletoread(string)
int,block randomread(int, int)
boolean closefile(void)

This operation can reuse the openfiletoread() and closefile() function calls, but
introduces a randomread () call which allows up to 512 bytes to be read beginning at
an arbitrary byte location. The results should be printed to the output.

Example

Your client program must have at least one command line argument, the name of the remote
machine to contact for the file server. If the next argument is the “-f filename” switch then
your client program should read in commands from a file. If the “-f” option is absent, then
the commands are to be read from standard input. You should provide the user with a
command prompt, but only if input is from standard input. An example set of operations
and appropriate responses are given below. In general each operation must print a single
line response message (except for [s and Is - as shown below). The basic response line must

begin “operation [succeeded|failed]” with additional explanation optional.
% client serverhost

$ getdir

getdir succeeded with /users/csfaculty/cew
$ 1s

v

./

foo/

letter.tex

progl.c

$ filecount

filecount succeeded with count of b5

$ 1s -1

./ 512 Mon Nov 14 21:12:29 EST 2005
o/ 4096 Mon Nov 14 21:12:29 EST 2005
foo/ 512 Mon Nov 14 21:14:48 EST 2005
letter.tex 2935 Mon Nov 14 21:26:01 EST 2005
progl.c 1170 Mon Nov 14 21:16:11 EST 2005
$ cd foo



cd succeeded

$ getdir

getdir succeeded with /users/csfaculty/cew/foo

$ 1s -1

i 512 Mon Nov 14 21:15:29 EST 2005
./ 4096 Mon Nov 14 21:15:29 EST 2005
$ cd bar

cd failed

$ cd ..

cd succeeded

$ get progl.c localprogl.c

get succeeded transferring 1170 bytes

$ get prog2.c localprog2.c

get failed prog2.c not found

$ randomread letter.tex 1 14

randomread succeeded transferring 14 bytes
\documentclass$

Each input line contains one operation with any needed parameters separated by spaces.
Again, your program must given the operation name and “succeeded” or “failed” after each
operation other than for Is and [s -I. The format of any output after the success or failure
indication is up to you, but it must be on a single line. The order of your output for the
Is operations may differ from the example. Note that the output from the randomread
operation may not terminate with a newline character. This result will cause the prompt to
be printed on the same line as the output as shown in the example.

Your Task

The name of your client executable should be client and the name of your server executable
should be server. It is suggested that your proceed in the following manner for this project:

1. Concentrate on the directory operations first. As a starting point to ensure that you
understand how to access the underlying directory information, you should create a
single program that implements the directory operations using the suggested function
calls. This program should not use RPC or RMI. A correctly working program that
implements the directory operations is worth 12 points on the project.

2. Once this program is working, break it in two so that you have a client and server
program. You will need to to use Sun RPC or Java RMI for the client stub functions
to call the appropriate server stubs. Correctly working client and server programs that
implement the directory operations are worth 21 points on the project.



3. Next implement the two sequential access file operations. Correct implementation
of these two operations in your client/server architecture are worth 28 points on the
project.

4. Next implement the random access file operation. Correct implementation of it is
worth 31 points on the project.

5. For the final four points of the project, you will need to implement a filtering mechanism
for the filecount and Is commands. The filtering must be done on the server-side, using
arguments passed from the client. As part of the command line for filecount and ls the
user can include any one (but no more than one) of the following:

size[<>=]value
age[<>=]value
type=[d|r]

These arguments allow users to list of count files with particular size attributes, age
(current - last modified time) attributes or type attributes. You will need to create
an argument to pass with filecount() and nextlist() that will include the filter if
given. If no filter is specified then these routines should work as previously described.
Examples of their use:

$ filecount size>400

filecount succeeded with count of 1
$ 1s age<id

letter.tex

$ filecount type=d

filecount succeeded with count of 3

The first example counts all files with a size greater than 400 bytes. The second
example lists all files with an age less than one day. The value is given as an integer
followed by s, m, h, d indicating a unit of seconds, minutes, hours or days. The last
example shows a count of all directories. A value of “r” for type counts or lists regular
files.

Submission

Use the turnin program to submit your project with the name “proj2”. Turn in your program
files, makefile (if any) and script files showing runs for the sample file; do not turn in any
executable files. Indicate in header comments of your code what portions of the project you
attempted and completed.



