Project 2: Data Pre-processing, Mining, and Evaluation of Classification Rules: Homework

Piotr Mardziel

7th April 2004

Contents

2	Project 2: Data Pre-processing, Mining, and Evaluation of Classification				\mathbf{R} u	les:	$\mathbf{H}_{\mathbf{C}}$	me	∋-					
	wor	k												2
	2.1	Group	Members	s		 	 	 	 					. 2
	2.2			mework Assignm										
				Using $\frac{p}{t}$										
				risk = low										
				risk = moderat										
				risk = high										
				Results										
		2.2.2	PRISM	Using $p \cdot \lceil \lg \left(\frac{p}{t} \right) \rceil$	$-\lg\left(\frac{P}{T}\right)$. 13
				risk = low										
			2.2.2.2	risk = moderat	e	 	 	 	 					. 16
			2.2.2.3	risk = high		 	 	 	 					. 19
			2.2.2.4	Results										
		2.2.3	PRISM	Pruning		 	 	 	 					23

Chapter 2

Project 2: Data Pre-processing, Mining, and Evaluation of Classification Rules: Homework

2.1 Group Members

GROUP MEMBER	USERNAME	TASKS
Piotr Mardziel	piotrm	everything

2.2 Pre-Project Homework Assignment

2.2.1 PRISM Using $\frac{p}{t}$

Lets start with rules for determining high risk.

2.2.1.1 risk = low

	Applicable Instances							
Instance	credit_history	debt	collateral	income	risk			
1	bad	low	none	0-15	high			
2	unknown	high	none	15-35	high			
3	unknown	low	none	15-35	moderate			
4	bad	low	none	15-35	moderate			
5	unknown	low	adequate	>35	low			
6	unknown	low	none	>35	low			
7	unknown	high	none	0-15	high			
8	bad	low	adequate	>35	moderate			
9	good	low	none	>35	low			
10	good	high	adequate	>35	low			
11	good	high	none	0-15	high			
12	good	high	none	15-35	moderate			
13	good	high	none	>35	low			
14	bad	high	none	15-35	high			

• IF ? THEN risk = low

Candidate Attributes						
Candidate	$Goodness^2$					
$credit_history = bad$	0/4					
$credit_history = unknown$	2/5					
$credit_history = good$	3/5					
dept = low	3/7					
debt = high	2/7					
collateral = none	3/11					
collateral = adequate	2/3					
income = 0-15	0/3					
income = 15-35	0/5					
income = >35	5/6					

• IF income = >35 AND ? THEN risk = low

Rule is not perfect so lets try again given only those instances covered by this rule so far.

Applicable Instances								
Instance	$\operatorname{credit_history}$	debt	collateral	income	risk			
5	unknown	low	adequate	>35	low			
6	unknown	low	none	>35	low			
8	bad	low	adequate	>35	moderate			
9	good	low	none	>35	low			
10	good	high	adequate	>35	low			
13	good	high	none	>35	low			

Candidate Attributes						
Candidate	Goodness					
$credit_history = bad$	0/1					
$credit_history = unknown$	2/2					
credit_history = good	3/3					
dept = low	3/4					
${ m debt} = { m high}$	2/2					
collateral = none	3/3					
collateral = adequate	2/3					

ullet IF income = >35 AND credit_history = good THEN risk = low

The rule is now perfect so lets remove the instances covered and start over to get another rule.

Applicable Instances								
Instance	credit_history	debt	collateral	income	risk			
1	bad	low	none	0-15	high			
2	unknown	high	none	15-35	high			
3	unknown	low	none	15-35	moderate			
4	bad	low	none	15-35	$\operatorname{moderate}$			

Instance	credit_history	debt	collateral	income	risk
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
14	bad	high	none	15-35	high

2.2.1.1.2 Rule 2

 $\bullet \ \ IF \ ? \ THEN \ risk = low$

Candidate Attributes						
Candidate	Goodness					
$credit_history = bad$	0/4					
$credit_history = unknown$	2/5					
$credit_history = good$	0/5					
dept = low	2/6					
${ m debt}={ m high}$	0/5					
collateral = none	1/9					
collateral = adequate	1/2					
income = 0-15	0/3					
income = 15-35	0/5					
income = >35	2/3					

 $\bullet \ \ IF \ income = > 35 \ THEN \ risk = low$

The rule is not perfect. So lets keep on going.

Applicable Instances							
Instance	$\operatorname{credit_history}$	debt	collateral	income	risk		
5	unknown	low	adequate	> 35	low		
6	unknown	low	none	>35	low		
8	bad	low	adequate	>35	moderate		

Candidate Attributes						
Candidate	Goodness					
$\operatorname{credit_history} = \operatorname{bad}$	0/1					
credit_history = unknown	2/2					
credit_history = good	0/0					
dept = low	2/3					
$\mathrm{debt} = \mathrm{high}$	0/0					
collateral = none	1/1					
$\operatorname{collateral} = \operatorname{adequate}$	1/2					

ullet IF income = >35 AND credit_history = unknown THEN risk = low

This rule is perfect. Remove the instances it classifies and continue.

	Applicable Instances								
Instance	credit_history	debt	collateral	income	risk				
1	bad	low	none	0-15	high				
2	unknown	high	none	15-35	high				
3	unknown	low	none	15-35	$\operatorname{moderate}$				
4	bad	low	none	15-35	$\operatorname{moderate}$				
7	unknown	high	none	0-15	high				
8	bad	low	adequate	>35	$\operatorname{moderate}$				
11	good	high	none	0-15	high				
12	good	high	none	15-35	moderate				
14	bad	high	none	15-35	high				

There are no more instances with risk = low so this part of the rule-set is complete. The two rules generated are:

2.2.1.1.3 Resulting Rules

- 1. IF income = >35 AND credit_history = good THEN risk = low
- 2. IF income = >35 AND credit_history = unknown THEN risk = low

Next comes moderate risk.

2.2.1.2 risk = moderate

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
1	bad	low	none	0-15	high	
2	unknown	high	none	15-35	high	
3	unknown	low	none	15-35	$\operatorname{moderate}$	
4	bad	low	none	15-35	$\operatorname{moderate}$	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	
7	unknown	high	none	0-15	high	
8	bad	low	adequate	>35	moderate	
9	good	low	none	>35	low	
10	good	high	adequate	>35	low	
11	good	high	none	0-15	high	
12	good	high	none	15-35	moderate	
13	good	high	none	> 35	low	
14	bad	high	none	15-35	high	

2.2.1.2.1 Rule 1

• IF ? THEN risk = moderate

Candidate Attributes				
Candidate	Goodness			
$credit_history = bad$	2/4			
$credit_history = unknown$	1/5			
$\operatorname{credit_history} = \operatorname{good}$	1/5			
dept = low	3/7			

Candidate	Goodness
debt = high	1/7
collateral = none	3/11
collateral = adequate	1/3
income = 0-15	0/3
income = 15-35	3/5
$\mathrm{income} = >35$	1/6

 \bullet IF income = 15-35 THEN risk = moderate

This rule is not even close to being perfect so more attributes are necessary.

Applicable Instances					
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
12	good	high	none	15-35	moderate
14	bad	high	none	15-35	high

 \bullet IF income = 15-35 AND ? THEN risk = moderate

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	1/2				
$credit_history = unknown$	1/2				
$credit_history = good$	1/1				
dept = low	2/2				
debt = high	1/3				
collateral = none	3/5				
collateral = adequate	0/0				

• IF income = 15-35 AND debt = low THEN risk = moderate

This rule is perfect. Removing the instances classified and trying to get another rule.

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
1	bad	low	none	0-15	high	
2	unknown	high	none	15-35	high	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	
7	unknown	high	none	0-15	high	
8	bad	low	adequate	>35	moderate	
9	good	low	none	>35	low	
10	good	high	adequate	>35	low	
11	good	high	none	0-15	high	
12	good	high	none	15-35	moderate	
13	good	high	none	>35	low	
14	bad	high	none	15-35	high	

2.2.1.2.2 Rule 2

• IF ? THEN risk = moderate

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	1/3				
$credit_history = unknown$	0/4				
$credit_history = good$	1/5				
dept = low	1/5				
debt = high	1/7				
collateral = none	1/9				
collateral = adequate	1/3				
income = 0-15	0/3				
income = 15-35	1/3				
income = >35	1/6				

 $\bullet \ \ IF \ credit_history = bad \ THEN \ risk = moderate$

This seems to be the least perfect partial rule so far so let's keep on going.

Applicable Instances					
Instance credit_history debt collateral income risk					
1	bad	low	none	0-15	high
8	bad	low	adequate	>35	moderate
14	bad	high	none	15-35	high

 \bullet IF credit_history = bad AND ? THEN risk = moderate

Candidate Attributes					
Candidate	Goodness				
dept = low	1/2				
${ m debt}={ m high}$	0/1				
collateral = none	0/2				
collateral = adequate	1/1				
income = 0-15	0/1				
income = 15-35	0/1				
income = >35	1/1				

• IF credit history = bad AND collateral = adequate THEN risk = moderate

This rule is perfect so lets remove the instances it classifies and try to get a third rule.

	Applicable Instances					
Instance	$\operatorname{credit_history}$	debt	collateral	income	risk	
1	bad	low	none	0-15	high	
2	unknown	high	none	15-35	high	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	

Instance	credit_history	debt	collateral	income	risk
7	unknown	high	none	0-15	high
9	good	low	none	>35	low
10	good	high	adequate	> 35	low
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	> 35	low
14	bad	high	none	15-35	high

2.2.1.2.3 Rule 3

• IF ? THEN risk = moderate

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	0/2				
$credit_history = unknown$	0/4				
$credit_history = good$	1/5				
dept = low	0/4				
${ m debt}={ m high}$	1/7				
collateral = none	1/9				
collateral = adequate	0/2				
income = 0-15	0/3				
$\mathrm{income} = 15\text{-}35$	1/3				
income = >35	0/5				

 \bullet IF income = 15-35 THEN risk = moderate

Unfortunately the rule is not yet perfect so lets continue.

Applicable Instances					
Instance credit_history debt collateral income risk					
2	unknown	high	none	15-35	high
12	good	high	none	15-35	moderate
14	bad	high	none	15-35	high

 \bullet IF income = 15-35 AND ? THEN risk = moderate

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	0/1				
$credit_history = unknown$	0/1				
$credit_history = good$	1/1				
dept = low	0/0				
${ m debt}={ m high}$	1/3				
collateral = none	1/3				
collateral = adequate	0/0				

ullet IF income = 15-35 AND credit_history = good THEN risk = moderate

This rule is perfect so let's see if there are any attributes left to classify for a fourth rule.

Applicable Instances							
Instance	$\operatorname{credit_history}$	debt	collateral	income	risk		
1	bad	low	none	0-15	high		
2	unknown	high	none	15-35	high		
5	unknown	low	adequate	>35	low		
6	unknown	low	none	>35	low		
7	unknown	high	none	0-15	high		
9	good	low	none	>35	low		
10	good	high	adequate	>35	low		
11	good	high	none	0-15	high		
13	good	high	none	>35	low		
14	bad	high	none	15-35	high		

There doesn't appear to be any. This means the risk = moderate rules are done.

$\textbf{2.2.1.2.4} \quad \textbf{Resulting Rules}$

- 1. IF income = 15-35 AND debt = low THEN risk = moderate
- 2. IF $credit_history = bad\ AND\ collateral = adequate\ THEN\ risk = moderate$
- 3. IF income = 15-35 AND credit_history = good THEN risk = moderate Finally approaches high risk.

2.2.1.3 risk = high

Applicable Instances					
Instance	${ m credit_history}$	debt	collateral	income	risk
1	bad	low	none	0-15	high
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.1.3.1 Rule 1

 \bullet IF ? THEN risk = high

Candidate Attributes				
Candidate	Goodness			
$credit_history = bad$	2/4			
$credit_history = unknown$	2/5			

Candidate	Goodness
$credit_history = good$	1/5
dept = low	1/7
debt = high	4/7
collateral = none	5/11
collateral = adequate	0/3
income = 0-15	3/3
income = 15-35	2/5
$\mathrm{income} = >35$	0/6

• IF income = 0-15 THEN risk = high

Luckily this rule is already perfect so already the instances classified by it can be removed and rule 2 can be searched for.

Applicable Instances					
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.1.3.2 Rule 2

• IF ? THEN risk = high

Candidate Attributes				
Candidate	Goodness			
$\operatorname{credit_history} = \operatorname{bad}$	1/3			
$\operatorname{credit_history} = \operatorname{unknown}$	1/4			
$\operatorname{credit_history} = \operatorname{good}$	0/4			
$\mathrm{dept} = \mathrm{low}$	0/6			
${ m debt}={ m high}$	$\mathbf{2/5}$			
collateral = none	2/8			
collateral = adequate	0/3			
income = 0-15	0/0			
income = 15-35	2/5			
income = >35	0/6			

 \bullet IF debt = high THEN risk = high

Rule is not yet perfect.

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
2	unknown	high	none	15-35	high	
10	good	high	adequate	>35	low	
12	good	high	none	15-35	moderate	
13	good	high	none	>35	low	
14	bad	high	none	15-35	high	

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	1/1				
$credit_history = unknown$	1/1				
$credit_history = good$	0/3				
collateral = none	2/4				
collateral = adequate	0/1				
income = 0-15	0/0				
income = 15-35	2/3				
income = >35	0/2				

 $\bullet \ IF \ debt = high \ AND \ credit_history = bad \ THEN \ risk = high$

Now the rule is perfect but there is room for one more rule.

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
2	unknown	high	none	15-35	high	
3	unknown	low	none	15-35	moderate	
4	bad	low	none	15-35	moderate	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	
8	bad	low	adequate	>35	moderate	
9	good	low	none	>35	low	
10	good	high	adequate	>35	low	
12	good	high	none	15-35	moderate	
13	good	high	none	>35	low	

2.2.1.3.3 Rule 3

• IF ? THEN risk = high

Candidate Attributes					
Candidate	Goodness				
$credit_history = bad$	0/2				
$credit_history = unknown$	1/4				
$credit_history = good$	0/4				
dept = low	0/6				
debt = high	1/4				

Candidate	Goodness
collateral = none	1/7
collateral = adequate	0/3
income = 0-15	0/0
income = 15-35	1/4
income = >35	0/6

 \bullet IF credit_history = unknown THEN risk = high

This is not yet perfect.

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
2	unknown	high	none	15-35	high	
3	unknown	low	none	15-35	moderate	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	

Candidate Attributes					
Candidate	Goodness				
dept = low	0/3				
debt = high	1/1				
collateral = none	1/3				
collateral = adequate	0/1				
income = 0-15	0/0				
income = 15-35	1/2				
income = >35	0/2				

ullet IF credit_history = unknown AND debt = high THEN risk = high

Lets check if any more rules are required.

	Applicable Instances						
Instance	credit_history	debt	collateral	income	risk		
3	unknown	low	none	15-35	moderate		
4	bad	low	none	15-35	moderate		
5	unknown	low	adequate	>35	low		
6	unknown	low	none	>35	low		
8	bad	low	adequate	>35	moderate		
9	good	low	none	>35	low		
10	good	high	adequate	>35	low		
12	good	high	none	15-35	moderate		
13	good	high	none	>35	low		

It doesn't look like it as there are no more instances with high risk.

2.2.1.3.4 Resulting Rules

1. IF income = 0-15 THEN risk = high

- 2. IF debt = high AND credit_history = bad THEN risk = high
- 3. IF credit history = unknown AND debt = high THEN risk = high

2.2.1.4 Results

This concludes the computation of PRISM on this dataset. There were 8 rules generated. They are:

- 1. risk = low
 - (a) IF income = >35 AND credit_history = good THEN risk = low
 - (b) IF income = >35 AND credit_history = unknown THEN risk = low
- 2. risk = moderate
 - (a) IF income = 15-35 AND debt = low THEN risk = moderate
 - (b) IF credit_history = bad AND collateral = adequate THEN risk = moderate
 - (c) IF income = 15-35 AND $credit_history = good$ THEN risk = moderate
- 3. risk = high
 - (a) IF income = 0-15 THEN risk = high
 - (b) IF debt = high AND credit_history = bad THEN risk = high
 - (c) IF $credit_history = unknown AND debt = high THEN risk = high$

2.2.2 PRISM Using $p \cdot \left[\lg \left(\frac{p}{t} \right) - \lg \left(\frac{P}{T} \right) \right]$

2.2.2.1 risk = low

Applicable Instances						
Instance	credit_history	debt	collateral	income	risk	
1	bad	low	none	0-15	high	
2	unknown	high	none	15-35	high	
3	unknown	low	none	15-35	moderate	
4	bad	low	none	15-35	moderate	
5	unknown	low	adequate	>35	low	
6	unknown	low	none	>35	low	
7	unknown	high	none	0-15	high	
8	bad	low	adequate	>35	$\operatorname{moderate}$	
9	good	low	none	>35	low	
10	good	high	adequate	>35	low	
11	good	high	none	0-15	high	
12	good	high	none	15-35	$\operatorname{moderate}$	
13	good	high	none	>35	low	
14	bad	high	none	15-35	high	

2.2.2.1.1 Rule 1

• IF ? THEN risk = low
$$\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{5}{14}\right) = 1.485\right]$$

Candidate Attributes						
Candidate	Goodness					
$credit_history = bad$	$0 \cdot \left[\lg\left(\frac{0}{4}\right) - \lg\left(\frac{5}{14}\right)\right] = -\infty$					
$credit_history = unknown$	$2 \cdot \left[\lg \left(\frac{2}{5} \right) - \lg \left(\frac{5}{14} \right) \right] = 0.327$					
$\operatorname{credit_history} = \operatorname{good}$	$\left[3 \cdot \left[\lg\left(\frac{3}{5}\right) - \lg\left(\frac{5}{14}\right)\right] = 2.245\right]$					
dept = low	$3 \cdot \left[\lg \left(\frac{3}{7} \right) - \lg \left(\frac{5}{14} \right) \right] = 0.789$					
${ m debt}={ m high}$	$2 \cdot \left[\lg\left(\frac{2}{7}\right) - \lg\left(\frac{5}{14}\right)\right] = -0.644$					
collateral = none	$3 \cdot \left[\lg \left(\frac{3}{11} \right) - \lg \left(\frac{5}{14} \right) \right] = -1.157$					
collateral = adequate	$\left[2 \cdot \left[\lg\left(\frac{2}{3}\right) - \lg\left(\frac{5}{14}\right)\right] = 1.801\right]$					
income = 0-15	$\left[0 \cdot \left[\lg\left(\frac{0}{3}\right) - \lg\left(\frac{5}{14}\right)\right] = -\infty\right]$					
income = 15-35	$0 \cdot \left[\lg\left(\frac{0}{5}\right) - \lg\left(\frac{5}{14}\right)\right] = -\infty$					
income = >35	$\left[5 \cdot \left[\lg \left(\frac{5}{6} \right) - \lg \left(\frac{5}{14} \right) \right] = 6.112 \right]$					

• IF income = >35 THEN risk = low $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{5}{6}\right) = 0.263\right]$

The rule is not perfect so lets keep on going.

	Applicable Instances						
Instance	credit_history	debt	collateral	income	risk		
5	unknown	low	adequate	> 35	low		
6	unknown	low	none	>35	low		
8	bad	low	adequate	>35	moderate		
9	good	low	none	>35	low		
10	good	high	adequate	>35	low		
13	good	high	none	>35	low		

• IF income = >35 AND ? THEN risk = low $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{5}{6}\right) = 0.263\right]$

Candidate Attributes						
Candidate	Goodness					
$credit_history = bad$	$0 \cdot \left[\lg\left(\frac{0}{1}\right) - \lg\left(\frac{5}{6}\right)\right] = -\infty$					
$credit_history = unknown$	$\left[2 \cdot \left[\lg\left(\frac{2}{2}\right) - \lg\left(\frac{5}{6}\right)\right] = 0.526\right]$					
$credit_history = good$	$\left[3 \cdot \left[\lg\left(\frac{3}{3}\right) - \lg\left(\frac{5}{6}\right)\right] = 0.789\right]$					
dept = low	$3 \cdot \left[\lg \left(\frac{3}{4} \right) - \lg \left(\frac{5}{6} \right) \right] = -0.456$					
debt = high	$2 \cdot \left[\lg\left(\frac{2}{2}\right) - \lg\left(\frac{5}{6}\right)\right] = 0.525$					
collateral = none	$3 \cdot \left[\lg\left(\frac{3}{3}\right) - \lg\left(\frac{5}{6}\right)\right] = 0.789$					
collateral = adequate	$2 \cdot \left[\lg \left(\frac{2}{3} \right) - \lg \left(\frac{5}{6} \right) \right] = -0.644$					

ullet IF income = >35 and credit_history = good THEN risk = low [perfect]

This rule is perfect so lets remove instances it covers and try to find another rule.

	Applicable Instances						
Instance	$\operatorname{credit_history}$	debt	collateral	income	risk		
1	bad	low	none	0-15	high		
2	unknown	high	none	15-35	high		
3	unknown	low	none	15-35	moderate		
4	bad	low	none	15-35	moderate		
5	unknown	low	adequate	>35	low		

Instance	credit_history	debt	collateral	income	risk
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
14	bad	high	none	15-35	high

2.2.2.1.2 Rule 2

• IF ? THEN risk = low $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{11}\right) = 2.459\right]$

Candidate Attributes						
Candidate	Goodness					
$credit_history = bad$	$0 \cdot \left[\lg \left(\frac{0}{4} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$					
$credit_history = unknown$	$\left[2 \cdot \left[\lg\left(\frac{2}{5}\right) - \lg\left(\frac{2}{11}\right)\right] = 2.275\right]$					
$credit_history = good$	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$					
dept = low	$2 \cdot \left[\lg \left(\frac{2}{6} \right) - \lg \left(\frac{2}{11} \right) \right] = 1.750$					
debt = high	$\left[0 \cdot \left[\lg\left(\frac{0}{5}\right) - \lg\left(\frac{2}{11}\right)\right] = -\infty\right]$					
collateral = none	$\left[1 \cdot \left[\lg\left(\frac{1}{9}\right) - \lg\left(\frac{2}{11}\right)\right] = -0.710\right]$					
collateral = adequate	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{2}{11} \right) \right] = 1.459$					
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$					
income = 15-35	$0 \cdot \left[\lg \left(\frac{0}{5} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$					
income = >35	$2 \cdot \left \lg \left(\frac{2}{3} \right) - \lg \left(\frac{2}{11} \right) \right = 3.749$					

• IF income = >35 THEN risk = low $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{3}\right) = 0.585\right]$

The rule is obviously not perfect yet.

	Applicable Instances						
Instance credit_history debt collateral income risk							
5	unknown	low	adequate	>35	low		
6	unknown	low	none	>35	low		
8	bad	low	adequate	>35	moderate		

• IF income = >35 AND ? THEN risk = low $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{3}\right) = 0.585\right]$

Candidate Attributes			
Candidate	Goodness		
$credit_history = bad$	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{2}{3} \right) \right] = -\infty$		
$credit_history = unknown$	$\left[2 \cdot \left[\lg \left(rac{2}{2} ight) - \lg \left(rac{2}{3} ight) ight] = 1.170$		
$credit_history = good$	$0 \cdot \left[\lg\left(\frac{0}{0}\right) - \lg\left(\frac{2}{3}\right)\right] = -\infty$		
dept = low	$2 \cdot \left[\lg \left(\frac{2}{3} \right) - \lg \left(\frac{2}{3} \right) \right] = 0$		
debt = high	$\left[0 \cdot \left[\lg\left(\frac{0}{0}\right) - \lg\left(\frac{2}{3}\right)\right] = -\infty\right]$		
collateral = none	$\left[1 \cdot \left[\lg\left(\frac{1}{2}\right) - \lg\left(\frac{2}{3}\right)\right] = -0.415$		
collateral = adequate	$\left[1 \cdot \left[\lg\left(\frac{1}{1}\right) - \lg\left(\frac{2}{3}\right)\right] = 0.585\right]$		

 $\bullet \ IF \ income = > 35 \ AND \ credit_history = unknown \ THEN \ risk = low \ [perfect]$

This rule is perfect and there are no more unclassified low risk instances.

2.2.2.1.3 Resulting Rules

- 1. IF income = >35 and credit_history = good THEN risk = low
- 2. IF income = >35 AND credit_history = unknown THEN risk = low

2.2.2.2 risk = moderate

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
1	bad	low	none	0-15	high
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.2.2.1 Rule 1

• IF ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{4}{14}\right) = 1.807\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$2 \cdot \left[\lg \left(\frac{2}{4} \right) - \lg \left(\frac{4}{14} \right) \right] = 1.615$	
$credit_history = unknown$	$1 \cdot \left[\lg \left(\frac{1}{5} \right) - \lg \left(\frac{4}{14} \right) \right] = -0.516$	
$\operatorname{credit_history} = \operatorname{good}$	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{4}{14} \right) \right] = 0.807$	
dept = low	$3 \cdot \left[\lg \left(\frac{3}{7} \right) - \lg \left(\frac{4}{14} \right) \right] = 1.755$	
${ m debt}={ m high}$	$1 \cdot \left[\lg\left(\frac{1}{7}\right) - \lg\left(\frac{4}{14}\right)\right] = -1.000$	
collateral = none	$3 \cdot \left[\lg \left(\frac{3}{11} \right) - \lg \left(\frac{4}{14} \right) \right] = -0.201$	
collateral = adequate	$\left[1 \cdot \left[\lg\left(\frac{1}{3}\right) - \lg\left(\frac{4}{14}\right)\right] = 0.222\right]$	
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{4}{14} \right) \right] = -\infty$	
income = 15-35	$3 \cdot \left[\lg \left(\frac{3}{5} \right) - \lg \left(\frac{4}{14} \right) \right] = 3.211$	
income = >35	$\left[1 \cdot \left[\lg\left(\frac{1}{6}\right) - \lg\left(\frac{4}{14}\right)\right] = -0.778\right]$	

• IF income = 15-35 THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{3}{5}\right) = 0.737\right]$

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
12	good	high	none	15-35	$\operatorname{moderate}$
14	bad	high	none	15-35	high

• IF income = 15-35 AND ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{3}{5}\right) = 0.737\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{3}{5} \right) \right] = -0.263$	
$credit_history = unknown$	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{3}{5} \right) \right] = -0.263$	
$credit_history = good$	$1 \cdot \left[\lg \left(\frac{1}{1} \right) - \lg \left(\frac{3}{5} \right) \right] = 0.737$	
dept = low	$2 \cdot \left[\lg \left(\frac{2}{2} \right) - \lg \left(\frac{3}{5} \right) \right] = 1.474$	
debt = high	$1 \cdot \left[\lg \left(\frac{1}{3} \right) - \lg \left(\frac{3}{5} \right) \right] = -0.848$	
collateral = none	$3 \cdot \left[\lg \left(\frac{3}{5} \right) - \lg \left(\frac{3}{5} \right) \right] = 0$	
collateral = adequate	$0 \cdot \left[\lg\left(\frac{0}{0}\right) - \lg\left(\frac{3}{5}\right)\right] = -\infty$	

 $\bullet \ IF \ income = 15\text{-}35 \ AND \ debt = low \ THEN \ risk = moderate \ [perfect]$

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
1	bad	low	none	0-15	high
2	unknown	high	none	15-35	high
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.2.2. Rule 2

• IF ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{12}\right) = 2.585\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$\left[1 \cdot \left[\lg\left(\frac{1}{3}\right) - \lg\left(\frac{2}{12}\right)\right] = 1.000\right]$	
$credit_history = unknown$	$\left[0 \cdot \left[\lg\left(\frac{0}{4}\right) - \lg\left(\frac{2}{12}\right)\right] = -\infty\right]$	
$credit_history = good$	$1 \cdot \left[\lg \left(\frac{1}{5} \right) - \lg \left(\frac{2}{12} \right) \right] = 0.263$	
dept = low	$1 \cdot \left[\lg \left(\frac{1}{5} \right) - \lg \left(\frac{2}{12} \right) \right] = 0.263$	
debt = high	$\left[1 \cdot \left[\lg\left(\frac{1}{7}\right) - \lg\left(\frac{2}{12}\right)\right] = -0.222\right]$	
collateral = none	$1 \cdot \left[\lg \left(\frac{1}{9} \right) - \lg \left(\frac{2}{12} \right) \right] = -0.585$	
collateral = adequate	$1 \cdot \left[\lg\left(\frac{1}{3}\right) - \lg\left(\frac{2}{12}\right)\right] = 1.000$	
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{2}{12} \right) \right] = -\infty$	
income = 15-35	$1 \cdot \left[\lg \left(\frac{1}{6} \right) - \lg \left(\frac{2}{12} \right) \right] = 0$	
income = >35	$\left[1 \cdot \left[\lg\left(\frac{1}{6}\right) - \lg\left(\frac{2}{12}\right)\right] = 0\right]$	

• IF credit_history = bad THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{3}\right) = 1.585\right]$

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
1	bad	low	none	0-15	high
8	bad	low	adequate	> 35	moderate
14	bad	high	none	15-35	high

• IF credit_history = bad AND ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{3}\right) = 1.585\right]$

Candidate Attributes		
Candidate	Goodness	
dept = low	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{1}{3} \right) \right] = 0.58$	
debt = high	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
collateral = none	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
collateral = adequate	$\left[egin{array}{c} 1 \cdot \left \lfloor \lg \left(rac{1}{1} ight) - \lg \left(rac{1}{3} ight) ight floor = 1.585 \end{array} ight]$	
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
income = 15-35	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
income = >35	$1 \cdot \left[\lg \left(\frac{1}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = 1.585$	

 $\bullet \ IF \ credit_history = bad \ AND \ collateral = adequate \ THEN \ risk = moderate \ [perfect]$

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
1	bad	low	none	0-15	high
2	unknown	high	none	15-35	high
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
9	good	low	none	>35	low
10	good	high	adequate	>35	low
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.2.2.3 Rule 3

• IF ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{11}\right) = 3.459\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{1}{11} \right) \right] = -\infty$	
$credit_history = unknown$	$0 \cdot \left[\lg \left(\frac{0}{4} \right) - \lg \left(\frac{1}{11} \right) \right] = -\infty$	
$credit_history = good$	$1 \cdot \left[\lg \left(\frac{1}{5} \right) - \lg \left(\frac{1}{11} \right) \right] = 1.138$	
dept = low	$0 \cdot \left[\lg \left(\frac{0}{4} \right) - \lg \left(\frac{1}{11} \right) \right] = -\infty$	
${ m debt}={ m high}$	$1 \cdot \left[\lg \left(\frac{1}{7} \right) - \lg \left(\frac{1}{11} \right) \right] = 0.652$	
collateral = none	$1 \cdot \left[\lg \left(\frac{1}{9} \right) - \lg \left(\frac{1}{11} \right) \right] = 0.290$	
collateral = adequate	$0 \cdot \left[\lg\left(\frac{0}{2}\right) - \lg\left(\frac{1}{11}\right)\right] = -\infty$	
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{1}{11} \right) \right] = -\infty$	

Candidate	Goodness
income = 15-35	$\left[1 \cdot \left[\lg\left(\frac{1}{3}\right) - \lg\left(\frac{1}{11}\right)\right] = 1.874\right]$
income = >35	$0 \cdot \left[\lg\left(\frac{0}{5}\right) - \lg\left(\frac{1}{11}\right)\right] = -\infty$

• IF income = 15-35 THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{3}\right) = 1.585\right]$

Applicable Instances					
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
12	good	high	none	15-35	moderate
14	bad	high	none	15-35	high

IF income = 15-35 AND ? THEN risk = moderate $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{3}\right) = 1.585\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
$credit_history = unknown$	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = -\infty$	
$credit_history = good$	$\left[1 \cdot \left[\lg \left(\frac{1}{1} \right) - \lg \left(\frac{1}{3} \right) \right] = 1.585 \right]$	
dept = low	$\left[0 \cdot \left[\lg\left(\frac{0}{0}\right) - \lg\left(\frac{1}{3}\right)\right] = -\infty\right]$	
debt = high	$1 \cdot \left[\lg \left(\frac{1}{3} \right) - \lg \left(\frac{1}{3} \right) \right] = 0$	
collateral = none	$1 \cdot \left[\lg \left(\frac{1}{3} \right) - \lg \left(\frac{1}{3} \right) \right] = 0$	
collateral = adequate	$\left[0 \cdot \left[\lg\left(\frac{0}{0}\right) - \lg\left(\frac{1}{3}\right)\right] = -\infty\right]$	

 $\bullet \ IF \ income = 15\text{-}35 \ AND \ credit_history = good \ THEN \ risk = moderate \ [perfect]$

This takes care of all the risk = moderate rules.

2.2.2.4 Resulting Rules

- 1. IF income = 15-35 AND debt = low THEN risk = moderate
- 2. IF $credit_history = bad\ AND\ collateral = adequate\ THEN\ risk = moderate$
- 3. IF income = 15-35 AND credit_history = good THEN risk = moderate

$\mathbf{2.2.2.3} \quad risk = high$

	Applicable Instances				
Instance	credit_history	debt	collateral	income	risk
1	bad	low	none	0-15	high
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
7	unknown	high	none	0-15	high
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low

Instance	credit_history	debt	collateral	income	risk
11	good	high	none	0-15	high
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.2.3.1 Rule 1

• IF ? THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{5}{14}\right) = 1.485\right]$

Candidat	e Attributes
Candidate	Goodness
$credit_history = bad$	$2 \cdot \left[\lg \left(\frac{2}{4} \right) - \lg \left(\frac{5}{14} \right) \right] = 0.971$
$credit_history = unknown$	$5 \cdot \left[\lg \left(\frac{2}{5} \right) - \lg \left(\frac{5}{14} \right) \right] = 0.327$
$credit_history = good$	$1 \cdot \left[\lg\left(\frac{1}{5}\right) - \lg\left(\frac{5}{14}\right)\right] = -0.837$
dept = low	$1 \cdot \left[\lg\left(\frac{1}{7}\right) - \lg\left(\frac{5}{14}\right)\right] = -1.322$
debt = high	$4 \cdot \left[\lg \left(\frac{4}{7} \right) - \lg \left(\frac{5}{14} \right) \right] = 2.712$
collateral = none	$5 \cdot \left[\lg \left(\frac{5}{11} \right) - \lg \left(\frac{5}{14} \right) \right] = 1.740$
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{5}{14} \right) \right] = -\infty$
income = 0-15	$\left[3 \cdot \left[\lg\left(\frac{3}{3} ight) - \lg\left(\frac{5}{14} ight) ight] = 4.456$
income = 15-35	$2 \cdot \left[\lg \left(\frac{2}{5} \right) - \lg \left(\frac{5}{14} \right) \right] = 0.327$
income = >35	$0 \cdot \left[\lg \left(\frac{0}{6} \right) - \lg \left(\frac{5}{14} \right) \right] = -\infty$

ullet IF income = 0-15 THEN risk = high [perfect]

Applicable Instances					
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	$\operatorname{moderate}$
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
8	bad	low	adequate	>35	$\operatorname{moderate}$
9	good	low	none	>35	low
10	good	high	adequate	>35	low
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

2.2.2.3.2 Rule 2

• IF ? THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{11}\right) = 2.459\right]$

Candidate Attributes			
Candidate	Goodness		
$credit_history = bad$	$1 \cdot \left[\lg \left(\frac{1}{3} \right) - \lg \left(\frac{2}{11} \right) \right] = 0.874$		
$credit_history = unknown$	$1 \cdot \left[\lg \left(\frac{1}{4} \right) - \lg \left(\frac{2}{11} \right) \right] = 0.459$		
$credit_history = good$	$0 \cdot \left[\lg \left(\frac{0}{4} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$		
dept = low	$0 \cdot \left[\lg\left(\frac{0}{6}\right) - \lg\left(\frac{2}{11}\right)\right] = -\infty$		

Candidate	Goodness
debt = high	$\left[2 \cdot \left[\lg\left(rac{2}{5} ight) - \lg\left(rac{2}{11} ight) ight] = 2.275$
collateral = none	$2 \cdot \left[\lg \left(\frac{2}{8} \right) - \lg \left(\frac{2}{11} \right) \right] = 0.919$
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{0} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$
income = 15-35	$\left[2 \cdot \left[\lg\left(\frac{2}{5}\right) - \lg\left(\frac{2}{11}\right)\right] = 2.275\right]$
income = >35	$0 \cdot \left[\lg \left(\frac{0}{6} \right) - \lg \left(\frac{2}{11} \right) \right] = -\infty$

• IF debt = high THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{5}\right) = 1.322\right]$

Applicable Instances					
Instance	credit_history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
10	good	high	adequate	>35	low
12	good	high	none	15-35	moderate
13	good	high	none	>35	low
14	bad	high	none	15-35	high

• IF debt = high AND ? THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{5}\right) = 1.322\right]$

Candidate Attributes			
Candidate	Goodness		
$credit_history = bad$	$1 \cdot \left[\lg \left(\frac{1}{1} \right) - \lg \left(\frac{2}{5} \right) \right] = 1.322$		
$credit_history = unknown$	$1 \cdot \left[\lg \left(\frac{1}{1} \right) - \lg \left(\frac{2}{5} \right) \right] = 1.322$		
$credit_history = good$	$\left[0 \cdot \left[\lg\left(\frac{0}{3}\right) - \lg\left(\frac{2}{5}\right)\right] = -\infty\right]$		
collateral = none	$\left[2 \cdot \left[\lg\left(\frac{2}{4}\right) - \lg\left(\frac{2}{5}\right)\right] = 0.644\right]$		
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{2}{5} \right) \right] = -\infty$		
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{0} \right) - \lg \left(\frac{2}{5} \right) \right] = -\infty$		
income = 15-35	$\left[2 \cdot \left[\lg \left(\frac{2}{3} \right) - \lg \left(\frac{2}{5} \right) \right] = 1.474 \right]$		
income = >35	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{2}{5} \right) \right] = -\infty$		

• IF debt = high AND income = 15-35 THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{3}\right) = 0.585\right]$

Note: So far this is the only deviation from the rules produced when $\frac{p}{t}$ was used.

Applicable Instances					
Instance	credit _history	$_{ m debt}$	collateral	income	risk
2	unknown	high	none	15-35	high
12	good	high	none	15-35	$\operatorname{moderate}$
14	bad	high	none	15-35	high

IF debt = high AND income = 15-35 AND ? THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{2}{3}\right) = 0.585\right]$

Candidate Attributes			
Candidate	Goodness		
$credit_history = bad$	$\left[1 \cdot \left[\lg\left(rac{1}{1} ight) - \lg\left(rac{2}{3} ight) ight] = 0.585$		
$credit_history = unknown$	$\left[1 \cdot \left[\lg\left(\frac{1}{1}\right) - \lg\left(\frac{2}{3}\right)\right] = 0.585\right]$		
$credit_history = good$	$0 \cdot \left[\lg\left(\frac{0}{1}\right) - \lg\left(\frac{2}{5}\right)\right] = -\infty$		
collateral = none	$\left 2 \cdot \left \lg \left(\frac{2}{3} \right) - \lg \left(\frac{2}{3} \right) \right = 0$		

Candidate	Goodness
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{0} \right) - \lg \left(\frac{2}{3} \right) \right] = -\infty$

ullet IF debt = high AND income = 15-35 AND credit_history = bad THEN risk = high [perfect]

Applicable Instances					
Instance	credit _history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
4	bad	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low
8	bad	low	adequate	>35	moderate
9	good	low	none	>35	low
10	good	high	adequate	>35	low
12	good	high	none	15-35	moderate
13	good	high	none	>35	low

2.2.2.3.3 Rule 3

• IF ? THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{10}\right) = 3.322\right]$

Candidate Attributes		
Candidate	Goodness	
$credit_history = bad$	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{1}{10} \right) \right] = -\infty$	
$credit_history = unknown$	$\left[1 \cdot \left[\lg \left(rac{1}{4} ight) - \lg \left(rac{1}{10} ight) ight] = 1.322$	
$credit_history = good$	$0 \cdot \left[\lg\left(\frac{0}{4}\right) - \lg\left(\frac{1}{10}\right)\right] = -\infty$	
dept = low	$0 \cdot \left[\lg \left(\frac{0}{6} \right) - \lg \left(\frac{1}{10} \right) \right] = -\infty$	
$\operatorname{debt} = \operatorname{high}$	$1 \cdot \left[\lg \left(\frac{1}{4} \right) - \lg \left(\frac{1}{10} \right) \right] = 1.322$	
collateral = none	$1 \cdot \left[\lg \left(\frac{1}{7} \right) - \lg \left(\frac{1}{10} \right) \right] = 0.515$	
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{1}{10} \right) \right] = -\infty$	
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{0} \right) - \lg \left(\frac{1}{10} \right) \right] = -\infty$	
income = 15-35	$1 \cdot \left[\lg\left(\frac{1}{4}\right) - \lg\left(\frac{1}{10}\right)\right] = 1.322$	
income = >35	$0 \cdot \left[\lg\left(\frac{0}{6}\right) - \lg\left(\frac{1}{10}\right)\right] = -\infty$	

• IF credit_history = unknown THEN risk = high $\left[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{4}\right) = 2\right]$

	Applicable Instances				
Instance	credit _history	debt	collateral	income	risk
2	unknown	high	none	15-35	high
3	unknown	low	none	15-35	moderate
5	unknown	low	adequate	>35	low
6	unknown	low	none	>35	low

• IF credit_history = unknown AND ? THEN risk = high $[-\lg\left(\frac{P}{T}\right) = -\lg\left(\frac{1}{4}\right) = 2]$

Candidate Attributes	
Candidate	Goodness
dept = low	$0 \cdot \left[\lg \left(\frac{0}{3} \right) - \lg \left(\frac{1}{4} \right) \right] = -\infty$
debt = high	$\left[1 \cdot \left[\lg\left(\frac{1}{1}\right) - \lg\left(\frac{1}{4}\right)\right] = 2\right]$
collateral = none	$1 \cdot \left[\lg \left(\frac{1}{3} \right) - \lg \left(\frac{1}{4} \right) \right] = 0.415$
collateral = adequate	$0 \cdot \left[\lg \left(\frac{0}{1} \right) - \lg \left(\frac{1}{4} \right) \right] = -\infty$
income = 0-15	$0 \cdot \left[\lg \left(\frac{0}{0} \right) - \lg \left(\frac{1}{4} \right) \right] = -\infty$
income = 15-35	$1 \cdot \left[\lg \left(\frac{1}{2} \right) - \lg \left(\frac{1}{4} \right) \right] = 1$
income = >35	$0 \cdot \left[\lg \left(\frac{0}{2} \right) - \lg \left(\frac{1}{4} \right) \right] = -\infty$

 $\bullet \ \mathbf{IF} \ \mathbf{credit_history} = \mathbf{unknown} \ \mathbf{AND} \ \mathbf{debt} = \mathbf{high} \ \mathbf{THEN} \ \mathbf{risk} = \mathbf{high} \ [\mathbf{perfect}]$

2.2.2.3.4 Resulting Rules

- 1. IF income = 0-15 THEN risk = high
- 2. IF debt = high AND income = 15-35 AND credit history = bad THEN risk = high
- 3. IF credit_history = unknown AND debt = high THEN risk = high

2.2.2.4 Results

This concludes the computation of PRISM on this dataset using $p \cdot \left[\lg \left(\frac{p}{t} \right) - \lg \left(\frac{P}{T} \right) \right]$. There were 8 rules generated. They are:

- 1. risk = low
 - (a) IF income = >35 and credit history = good THEN risk = low
 - (b) IF income = >35 AND credit history = unknown THEN risk = low
- 2. risk = moderate
 - (a) IF income = 15-35 AND debt = low THEN risk = moderate
 - (b) IF credit history = bad AND collateral = adequate THEN risk = moderate
 - (c) IF income = 15-35 AND $credit_history = good$ THEN risk = moderate
- 3. risk = high
 - (a) IF income = 0-15 THEN risk = high
 - (b) IF debt = high AND income = 15-35 AND credit history = bad THEN risk = high
 - (c) IF credit_history = unknown AND debt = high THEN risk = high

2.2.3 PRISM Pruning

Note: I can think of many ways in which to use this $m: RULES \to REALS$ function to prune rules. But because PRISM in WEKA doesn't seem to be doing any pruning, I am assuming that the project description means to describe or explain the pruning method shown in the class text on pages 175-177.

Firstly the PRISM algorithm is used to generate a perfect rule for the first target attribute value. This rule is put through m in order to compute the likelihood of the rule being as good as it is purely by chance. Then the last attribute=value pair test is removed from that rule and the m function is computed over this shortened rule once more. Now the two computed values are compared. If the longer rule is less likely to occur by chance then it is kept and PRISM does its work again to get another perfect rule.

If, however, it is the case that the longer rule has a larger likelihood to occur by chance than the shorted rule then there is no purpose in keeping the longer rule. The short one is deemed more rewarding as it is

less likely to classify correctly by chance. The shortening process is then repeated again on the shorter rule until either shortening doesn't produce a better (less likely to occur by chance) rule or there is nothing left to remove. After the rule is optimized, PRISM begins its work again to come up with another perfect rule as if it generated the optimized rule all by its own.

Another similar method might be for PRISM to compare the chance values of a rule it is working on currently and the rule with an attribute added that it is considering to add. This way it could stop adding tests seems to make the rule more likely to occur by chance. The same $m: RULES \to REALS$ could be used. The two possible methods might not be similar. If one looks at a perfect rule and all possible "prefix" rules of that rule, there might be hills in the chance value these rules receive from the function. That is going from a full rule to a shorter rule might make the prune stop at one point, but going from an empty rule to a longer rule might make the rule creation stop at a different point.