
CS4445 B10 Homework 4 Part I Solution 

Yutao Wang 

Consider the zoo.arff dataset converted to arff from the Zoo Data Set available at Univ. of California 

Irvine KDD Data Repository. 

   1. Load this dataset onto Weka. Remove the 1st attribute (animal_name) which is a string. Go to 

"Associate" and run Apriori with "numRules = 30", "outputItemSets = True", "verbose = True", and 

default values for the remaining parameters. 

   2. Now run Apriori with "numRules = 30", "outputItemSets = True", "verbose = True", 

treatZeroAsMissing = True", and default values for the remaining parameters. 

          

1. [5 points] What difference do you see between the rules obtained in Parts 1 and 2 above? Explain. 

Part 2 doesn't generate rules with value 0 while part 1 does. Since 0 is a more common (frequent) value 

than 1, then part 1 generates a much larger number of rules (if Weka didn’t limit the output to the first 

30 rules generated), and these rules will tend to have many more occurrences of 0 values than of 1 

values. 

         

 2. [5 points] From now on, consider just the second set of rules (that is, when "treatZeroAsMissing = 

True"). Find an association rule you find interesting and explain it. Include the confidence and support 

values in your explanation of the rule. 

For rule: X->Y 

Confidence: c(X->Y) = σ(XUY)/ σ (X) = P(X and Y)/P(X) 

Support:  s(X->Y) = σ(XUY)/N = P(X) 

Take rule #15 as an example: 

hair=1 backbone=1 39==> milk=1 39 <conf:(1)> lift:(2.46) lev:(0.23) [23] conv:(23.17) 

The support value is 39/110, and confidence value is 39/39 = 1. This means that all animals in the 

dataset who have hair and a backbone, produce/drink milk. 

 

 3. [10 points] What are "lift", "leverage", and "conviction"? Provide an explicit formula for each one 

of them (look at the Weka code to find those formulas). Use the values of these metrics for the 

association rule you chose in the previous part to judge how interesting/useful this rule is. 

Lift (X->Y)= c(X->Y)/s(Y) = P(X and Y)/P(X)*P(Y) = P(Y|X)/P(Y). 

Leverage (X->Y) = P(X and Y)-P(X)*P(Y) 

Conviction(X->Y) = P(X)*P(~Y)/P(X and ~Y) 

In the previous example, lift = 2.46>1 indicates that having hair and backbone increases the probability 

of producing/drinking milk by a factor of 2.46. Leverage = 0.23 >0. According to Weka “… Leverage is the 

proportion of additional examples covered by both the premise and consequence above those expected 

if the premise and consequence were independent of each other. The total number of examples that 

this represents is presented in brackets following the leverage. Conviction is another measure of 

departure from independence.” Hence, in this example, the antecedent and the consequent of the rule 

cover 23 instances more than expected if they were independent. This provides additional evidence that 

the antecedent and the consequent of this rule are not independent from each other. The high value of 

Conviction (23.17) reinforces this point as well. 

 

  



4. Look at the itemsets generated. Let's consider in particular the generation of 5-itemsets from                 

     4-itemsets: 

            Minimum support: 0.35 (35 instances) 

            ... 

            Size of set of large itemsets L(4): 8 

            Large Itemsets L(4): 

            hair=1 milk=1 toothed=1 backbone=1 38 

            hair=1 milk=1 toothed=1 breathes=1 38 

            hair=1 milk=1 backbone=1 breathes=1 39 

            hair=1 toothed=1 backbone=1 breathes=1 38 

            milk=1 toothed=1 backbone=1 breathes=1 40 

            milk=1 backbone=1 breathes=1 tail=1 35 

            toothed=1 backbone=1 breathes=1 legs=4 35 

            toothed=1 backbone=1 breathes=1 tail=1 38 

            Size of set of large itemsets L(5): 1 

            Large Itemsets L(5): 

            hair=1 milk=1 toothed=1 backbone=1 breathes=1 38 

            

1. [5 points] State what the "join" condition is (called "merge" in the Fk-1xFk-1 method in your 

textbook p. 341). Show how the "join" condition was used to generate 5-itemsets from 4-itemsets. 

(Warning: not all candidate 5-itemsets are shown above.) 

Join condition is: Merge two (k-1)-itemsets into a k-itemset if their first (k-2) items are identical. 

Here, merge 

(1) 

hair=1 milk=1 toothed=1 backbone=1 38 

hair=1 milk=1 toothed=1 breathes=1 38 

into  

hair=1 milk=1 toothed=1 backbone=1 breathes=1 

(2) 

toothed=1 backbone=1 breathes=1 legs=4 35 

toothed=1 backbone=1 breathes=1 tail=1 38 

into 

toothed=1 backbone=1 breathes=1 legs=4 tail=1 

 

No other pair of frequent 4-itemsets satisfies the merge condition, so no more candidate 5-itemsets are 

generated. 

 

2. [5 points] State what the "subset" condition is (called "candidate pruning" in the Fk-1xFk-1 method 

in your textbook p. 341). Show how the "subset" condition was used to eliminate candidate 5-

itemsets from consideration before unnecessarily counting their support.  

Subset condition: check all the subsets of the resulting k-itemset that contain (k-1) items to see if they 

all are frequent (that is, have enough support). If at least one of these subset is not frequent, then the k-

itemset cannot be frequent (due to that apriori principle). 

 

 

 

 

  



For these two itemsets: 

hair=1 milk=1 toothed=1 backbone=1 breathes=1 

              all subsets of 4 items in this itemset are frequent 

hair=1 milk=1 toothed=1 backbone=1 38 

hair=1 milk=1 toothed=1 breathes=1 38 

hair=1 milk=1 backbone=1 breathes=1 39 

hair=1 toothed=1 backbone=1 breathes=1 38 

so this itemset is a candidate frequent itemset whose support will need to be calculated by scanning the 

dataset to determine whether or not if it is indeed frequent. 

  

toothed=1 backbone=1 breathes=1 legs tail=1 

Note that “backbone=1 breathes=1 legs=4 tail=1” doesn’t appear on the list of frequent  

4-itemsets, and therefore it is not frequent. Hence the 5-itemset cannot be frequent. 

 

5. [10 points] Consider the following frequent 4-itemset: 

            milk=1 backbone=1 breathes=1 tail=1  

Use Algorithms 6.2 and 6.3 (pp. 351-352), which are based on Theorem 6.2, to construct all rules with 

Confidence = 100% from this 4-itemset. Show your work by neatly constructing a lattice similar to the 

one depicted in Figure 6.15 (but you don't need to expand/include pruned rules).  

Let’s use the following notation: m=milk, a=backbone, r=breathes, t=tail: 

 

conf(art->m) = 35/60 = 0.5833<1, so prune all rules containing item m in their consequent. 

conf(mrt->a) = 35/35 = 1 

conf(mat->r) = 35/35 = 1 

conf(mar->t) = 35/41 = 0.8537 <1, so prune all rules containing item t in their consequent. 

conf(rt->ma): pruned 

conf(at->mr) : pruned 

conf(ar->mt) : pruned 

conf(mt->ar) = 35/35 = 1 

conf(mr->at) : pruned 

conf(ma->rt) : pruned 

conf(t->mar): pruned 

conf(r->mat): pruned 

conf(a->mrt): pruned 

conf(m->art): pruned 

The final rules after pruning are: 

 
 

 

mart->{} 

mrt->a mat->r 

mt->ar 



 

   3. [5 points] Explain how the processs of mining association rules in Weka's Apriori is performed in 

terms of the following parameters: lowerBoundMinSupport, upperBoundMinSupport, delta, 

metricType, minMetric, numRules. 

Since it might be difficult for a user to figure out a good value for minimum support so that sufficient 

association rules are produced (not too many or too few), Weka provides the ability to state the number 

of association rules desired instead of a min. support value.  Then, it follows a process like this: 

 

  min. support = upperBoundMinSupport 

 repeat 

  mine association rules with this min. support and the minMetric (say confidence) 

threshold values.  

When/if at least numRules are generated, then return them and exit 

If not enough rules were generated,  

     then decrease the min. support: min.support = min. support - delta 

 until min. support == lowerBoundMinSupport 

 

 

4. [10 points] Exercise 16, p. 411 of the textbook. 

(a) Range: (-∞, 1]. Here is why: 
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       M will be equal to 1 when P(B|A) = 1. 
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will increase. 

(c) As shown in the previous formula, when P(A) is increased while P(A,B) and P(B) remain unchanged, M 

will decrease. 
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remain unchanged, M will increase. 
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 , when f�� increases then N will increase while all the other parts in the 

right hand side of the equation will remain the same, so M will increase. 

(h) No, M is not invariant under row/column scaling. 
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(i) Under inversion, A becomes ~A, B become ~B (where ~A is the complement of A), so: 
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So after inversion the measure M(A’->B’) equals M(B->A). So M is not invariant under the inversion 

operation. 


