

# Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 1 of *Data Mining* by I. H. Witten and E. Frank



#### What's it all about?

- Data vs information
- Data mining and machine learning
- Structural descriptions
  - Rules: classification and association
  - Decision trees
- Datasets
  - Weather, contact lens, CPU performance, labor negotiation data, soybean classification
- Fielded applications
  - Loan applications, screening images, load forecasting, machine fault diagnosis, market basket analysis
- Generalization as search
- Data mining and ethics



#### Data vs. information

- Society produces huge amounts of data
  - Sources: business, science, medicine, economics, geography, environment, sports, ...
- Potentially valuable resource
- Raw data is useless: need techniques to automatically extract information from it
  - Data: recorded facts
  - Information: patterns underlying the data



### Information is crucial

- Example 1: *in vitro* fertilization
  - Given: embryos described by 60 features
  - Problem: selection of embryos that will survive
  - Data: historical records of embryos and outcome
- Example 2: cow culling
  - Given: cows described by 700 features
  - Problem: selection of cows that should be culled
  - Data: historical records and farmers' decisions



## Data mining

- Extracting
  - implicit,
  - previously unknown,
  - potentially useful
  - information from data
- Needed: programs that detect patterns and regularities in the data
- Strong patterns ⇒good predictions
  - Problem 1: most patterns are not interesting
  - Problem 2: patterns may be inexact (or spurious)
  - Problem 3: data may be garbled or missing



# Machine learning techniques

- Algorithms for acquiring structural descriptions from examples
- Structural descriptions represent patterns explicitly
  - Can be used to predict outcome in new situation
  - Can be used to understand and explain how prediction is derived (may be even more important)
- Methods originate from artificial intelligence, statistics, and research on databases



## Structural descriptions

#### Example: if-then rules

```
If tear production rate = reduced
    then recommendation = none
Otherwise, if age = young and astigmatic = no
    then recommendation = soft
```



| Age            | Spectacle prescription | Astigmatism | Tear production rate | Recommended<br>lenses |
|----------------|------------------------|-------------|----------------------|-----------------------|
| Young          | Myope                  | No          | Reduced              | None                  |
| Young          | Hypermetrope           | No          | Normal               | Soft                  |
| Pre-presbyopic | Hypermetrope           | No          | Reduced              | None                  |
| Presbyopic     | Myope                  | Yes         | Normal               | Hard                  |
|                |                        |             |                      |                       |



# Can machines really learn?

#### Definitions of "learning" from dictionary:

To get knowledge of by study, experience, or being taught
To become aware by information or from observation
To commit to memory
To be informed of, ascertain; to receive instruction

Difficult to measure

Trivial for computers

#### Operational definition:

Things learn when they change their behavior in a way that makes them perform better in the future.

Does a slipper learn?

Does learning imply intention?



## The weather problem

#### Conditions for playing a certain game

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
|          |             |          |       |      |

```
If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes
```



## Ross Quinlan

- Machine learning researcher from 1970's
- University of Sydney, Australia

1986 "Induction of decision trees" ML Journal

1993 C4.5: Programs for machine learning.

Morgan Kaufmann

199? Started







#### Classification vs. association rules

• Classification rule: predicts value of a given attribute (the classification of an example)

```
If outlook = sunny and humidity = high
  then play = no
```

 Association rule: predicts value of arbitrary attribute (or combination)

```
If temperature = cool then humidity = normal
If humidity = normal and windy = false
    then play = yes

If outlook = sunny and play = no
    then humidity = high

If windy = false and play = no
    then outlook = sunny and humidity = high
```



#### Weather data with mixed attributes

#### Some attributes have numeric values

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | 85          | 85       | False | No   |
| Sunny    | 80          | 90       | True  | No   |
| Overcast | 83          | 86       | False | Yes  |
| Rainy    | 75          | 80       | False | Yes  |
|          |             |          |       |      |

```
If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes
```



## The contact lenses data

| Age            | Spectacle prescription | Astigmatism | Tear production rate | Recommended    |
|----------------|------------------------|-------------|----------------------|----------------|
| Vouna          | Myono                  | No          | Reduced              | lenses<br>None |
| Young          | Myope                  |             |                      |                |
| Young          | Myope                  | No          | Normal               | Soft           |
| Young          | Myope                  | Yes         | Reduced              | None           |
| Young          | Myope                  | Yes         | Normal               | Hard           |
| Young          | Hypermetrope           | No          | Reduced              | None           |
| Young          | Hypermetrope           | No          | Normal               | Soft           |
| Young          | Hypermetrope           | Yes         | Reduced              | None           |
| Young          | Hypermetrope           | Yes         | Normal               | hard           |
| Pre-presbyopic | Myope                  | No          | Reduced              | None           |
| Pre-presbyopic | Myope                  | No          | Normal               | Soft           |
| Pre-presbyopic | Myope                  | Yes         | Reduced              | None           |
| Pre-presbyopic | Myope                  | Yes         | Normal               | Hard           |
| Pre-presbyopic | Hypermetrope           | No          | Reduced              | None           |
| Pre-presbyopic | Hypermetrope           | No          | Normal               | Soft           |
| Pre-presbyopic | Hypermetrope           | Yes         | Reduced              | None           |
| Pre-presbyopic | Hypermetrope           | Yes         | Normal               | None           |
| Presbyopic     | Myope                  | No          | Reduced              | None           |
| Presbyopic     | Myope                  | No          | Normal               | None           |
| Presbyopic     | Myope                  | Yes         | Reduced              | None           |
| Presbyopic     | Myope                  | Yes         | Normal               | Hard           |
| Presbyopic     | Hypermetrope           | No          | Reduced              | None           |
| Presbyopic     | Hypermetrope           | No          | Normal               | Soft           |
| Presbyopic     | Hypermetrope           | Yes         | Reduced              | None           |
| Presbyopic     | Hypermetrope           | Yes         | Normal               | None           |



### A complete and correct rule set

```
If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no
   and tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no
   and tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope
   and astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no
   and tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes
   and tear production rate = normal then recommendation = hard
If age young and astigmatic = yes
   and tear production rate = normal then recommendation = hard
If age = pre-presbyopic
   and spectacle prescription = hypermetrope
   and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
   and astigmatic = yes then recommendation = none
```



## A decision tree for this problem





# Classifying iris flowers

|   | Sepal length | Sepal width | Petal length | Petal width | Туре            |
|---|--------------|-------------|--------------|-------------|-----------------|
| 1 | 5.1          | 3.5         | 1.4          | 0.2         | Iris setosa     |
| 2 | 4.9          | 3.0         | 1.4          | 0.2         | Iris setosa     |
|   |              |             |              |             |                 |
| 1 | 7.0          | 3.2         | 4.7          | 1.4         | Iris versicolor |
| 2 | 6.4          | 3.2         | 4.5          | 1.5         | Iris versicolor |
|   |              |             |              |             |                 |
| 1 | 6.3          | 3.3         | 6.0          | 2.5         | Iris virginica  |
| 2 | 5.8          | 2.7         | 5.1          | 1.9         | Iris virginica  |
|   |              |             |              |             |                 |



If petal length < 2.45 then Iris setosa

If sepal width < 2.10 then Iris versicolor
...



# Predicting CPU performance

#### Example: 209 different computer configurations

|    | Cycle time (ns) |      | nemory<br>(b) | Cache<br>(Kb) | Channels |       | Performance |  |
|----|-----------------|------|---------------|---------------|----------|-------|-------------|--|
|    | MYCT            | MMIN | MMAX          | CACH          | CHMIN    | CHMAX | PRP         |  |
| 1  | 125             | 256  | 6000          | 256           | 16       | 128   | 198         |  |
| 2  | 29              | 8000 | 32000         | 32            | 8        | 32    | 269         |  |
|    |                 |      |               |               |          |       |             |  |
| 8( | 480             | 512  | 8000          | 32            | 0        | 0     | 67          |  |
| 09 | 480             | 1000 | 4000          | 0             | 0        | 0     | 45          |  |

#### Linear regression function

```
PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX
+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX
```



# Data from labor negotiations

| Attribute                       | Туре                       | 1    | 2    | 3    | <br>40 |
|---------------------------------|----------------------------|------|------|------|--------|
| Duration                        | (Number of years)          | 1    | 2    | 3    | 2      |
| Wage increase first year        | Percentage                 | 2%   | 4%   | 4.3% | 4.5    |
| Wage increase second year       | Percentage                 | ?    | 5%   | 4.4% | 4.0    |
| Wage increase third year        | Percentage                 | ?    | ?    | ?    | ?      |
| Cost of living adjustment       | {none,tcf,tc}              | none | tcf  | ?    | none   |
| Working hours per week          | (Number of hours)          | 28   | 35   | 38   | 40     |
| Pension                         | {none,ret-allw, empl-cntr} | none | ?    | ?    | ?      |
| Standby pay                     | Percentage                 | ?    | 13%  | ?    | ?      |
| Shift-work supplement           | Percentage                 | ?    | 5%   | 4%   | 4      |
| Education allowance             | {yes,no}                   | yes  | ?    | ?    | ?      |
| Statutory holidays              | (Number of days)           | 11   | 15   | 12   | 12     |
| Vacation                        | {below-avg,avg,gen}        | avg  | gen  | gen  | avg    |
| Long-term disability assistance | {yes,no}                   | no   | ?    | ?    | yes    |
| Dental plan contribution        | {none,half,full}           | none | ?    | full | full   |
| Bereavement assistance          | {yes,no}                   | no   | ?    | ?    | yes    |
| Health plan contribution        | {none,half,full}           | none | ?    | full | half   |
| Acceptability of contract       | {good,bad}                 | bad  | good | good | good   |



### Decision trees for the labor data







# Soybean classification

|             | Attribute               | Number of values | Sample value          |
|-------------|-------------------------|------------------|-----------------------|
| Environment | Time of occurrence      | 7                | July                  |
|             | Precipitation           | 3                | Above normal          |
|             |                         |                  |                       |
| Seed        | Condition               | 2                | Normal                |
|             | Mold growth             | 2                | Absent                |
|             |                         |                  |                       |
| Fruit       | Condition of fruit pods | 4                | Normal                |
|             | Fruit spots             | 5                | ?                     |
| Leaf        | Condition               | 2                | Abnormal              |
|             | Leaf spot size          | 3                | ?                     |
|             |                         |                  |                       |
| Stem        | Condition               | 2                | Abnormal              |
|             | Stem lodging            | 2                | Yes                   |
|             |                         |                  |                       |
| Root        | Condition               | 3                | Normal                |
| Diagnosis   |                         | 19               | Diaporthe stem canker |





## The role of domain knowledge

```
If leaf condition is normal and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown then diagnosis is rhizoctonia root rot
```

```
If leaf malformation is absent
and stem condition is abnormal
and stem cankers is below soil line
and canker lesion color is brown
then
diagnosis is rhizoctonia root rot
```

But in this domain, "leaf condition is normal" implies "leaf malformation is absent"!



# Fielded applications

- The result of learning—or the learning method itself—is deployed in practical applications
  - Processing loan applications
  - Screening images for oil slicks
  - Electricity supply forecasting
  - Diagnosis of machine faults
  - Marketing and sales
  - Separating crude oil and natural gas
  - Reducing banding in rotogravure printing
  - Finding appropriate technicians for telephone faults
  - Scientific applications: biology, astronomy, chemistry
  - Automatic selection of TV programs
  - Monitoring intensive care patients



## Processing loan applications

(American Express)

- Given: questionnaire with financial and personal information

- Question: should money be lent?
- Simple statistical method covers 90% of cases
- Borderline cases referred to loan officers
- But: 50% of accepted borderline cases defaulted!
- Solution: reject all borderline cases?
  - No! Borderline cases are most active customers



# Enter machine learning

- 1000 training examples of borderline cases
- 20 attributes:
  - age
  - years with current employer
  - years at current address
  - years with the bank
  - other credit cards possessed,...
- Learned rules: correct on 70% of cases
  - human experts only 50%
- Rules could be used to explain decisions to customers



# Screening images

- Given: radar satellite images of coastal waters
- Problem: detect oil slicks in those images
- Oil slicks appear as dark regions with changing size and shape
- Not easy: lookalike dark regions can be caused by weather conditions (e.g. high wind)
- Expensive process requiring highly trained personnel









## Enter machine learning

- Extract dark regions from normalized image
- Attributes:
  - size of region
  - shape, area
  - intensity
  - sharpness and jaggedness of boundaries
  - proximity of other regions
  - info about background
- Constraints:
  - Few training examples—oil slicks are rare!
  - Unbalanced data: most dark regions aren't slicks
  - Regions from same image form a batch
  - Requirement: adjustable false-alarm rate



# Load forecasting

 Electricity supply companies need forecast of future demand for power



- Forecasts of min/max load for each hour ⇒significant savings
- Given: manually constructed load model that assumes "normal" climatic conditions
- Problem: adjust for weather conditions
- Static model consist of:
  - base load for the year
  - load periodicity over the year
  - effect of holidays



# Enter machine learning

- Prediction corrected using "most similar" days
- Attributes:
  - temperature
  - humidity
  - wind speed
  - cloud cover readings
  - plus difference between actual load and predicted load
- Average difference among three "most similar" days added to static model
- Linear regression coefficients form attribute weights in similarity function



# Diagnosis of machine faults

 Diagnosis: classical domain of expert systems



- Given: Fourier analysis of vibrations measured at various points of a device's mounting
- Question: which fault is present?
- Preventative maintenance of electromechanical motors and generators
- Information very noisy
- So far: diagnosis by expert/hand-crafted rules



# Enter machine learning

- Available: 600 faults with expert's diagnosis
- ~300 unsatisfactory, rest used for training
- Attributes augmented by intermediate concepts that embodied causal domain knowledge
- Expert not satisfied with initial rules because they did not relate to his domain knowledge
- Further background knowledge resulted in more complex rules that were satisfactory
- Learned rules outperformed hand-crafted ones



# Marketing and sales I

- Companies precisely record massive amounts of marketing and sales data
- Applications:
  - Customer loyalty:
     identifying customers that are likely to defect by
     detecting changes in their behavior
     (e.g. banks/phone companies)
  - Special offers:
     identifying profitable customers
     (e.g. reliable owners of credit cards that need extra money during the holiday season)



# Marketing and sales II

- Market basket analysis
  - Association techniques find groups of items that tend to occur together in a transaction (used to analyze checkout data)



- Historical analysis of purchasing patterns
- Identifying prospective customers
  - Focusing promotional mailouts (targeted campaigns are cheaper than massmarketed ones)



## Machine learning and statistics

- Historical difference (grossly oversimplified):
  - Statistics: testing hypotheses
  - Machine learning: finding the right hypothesis
- But: huge overlap
  - Decision trees (C4.5 and CART)
  - Nearest-neighbor methods
- Today: perspectives have converged
  - Most ML algorithms employ statistical techniques



#### Statisticians

- Sir Ronald Aylmer Fisher
- Born: 17 Feb 1890 London, England Died: 29 July 1962 Adelaide, Australia
- Numerous distinguished contributions to developing the theory and application of statistics for making quantitative a vast field of biology





- Leo Breiman
- Developed decision trees
- 1984 Classification and Regression Trees. Wadsworth.



#### Generalization as search

- Inductive learning: find a concept description that fits the data
- Example: rule sets as description language
  - Enormous, but finite, search space
- Simple solution:
  - enumerate the concept space
  - eliminate descriptions that do not fit examples
  - surviving descriptions contain target concept



## Enumerating the concept space

- Search space for weather problem
  - $4 \times 4 \times 3 \times 3 \times 2 = 288$  possible combinations
  - With 14 rules  $\Rightarrow$  2.7x10<sup>34</sup> possible rule sets
- Other practical problems:
  - More than one description may survive
  - No description may survive
    - Language is unable to describe target concept
    - or data contains noise
- Another view of generalization as search: hill-climbing in description space according to prespecified matching criterion
  - Most practical algorithms use heuristic search that cannot guarantee to find the optimum solution



### Bias

- Important decisions in learning systems:
  - Concept description language
  - Order in which the space is searched
  - Way that overfitting to the particular training data is avoided
- These form the "bias" of the search:
  - Language bias
  - Search bias
  - Overfitting-avoidance bias



# Language bias

- Important question:
  - is language universal or does it restrict what can be learned?
- Universal language can express arbitrary subsets of examples
- If language includes logical *or* ("disjunction"), it is universal
- Example: rule sets
- Domain knowledge can be used to exclude some concept descriptions a priori from the search



### Search bias

- Search heuristic
  - "Greedy" search: performing the best single step
  - "Beam search": keeping several alternatives
  - •
- Direction of search
  - General-to-specific
    - E.g. specializing a rule by adding conditions
  - Specific-to-general
    - E.g. generalizing an individual instance into a rule



# Overfitting-avoidance bias

- Can be seen as a form of search bias
- Modified evaluation criterion
  - E.g. balancing simplicity and number of errors
- Modified search strategy
  - E.g. pruning (simplifying a description)
    - Pre-pruning: stops at a simple description before search proceeds to an overly complex one
    - Post-pruning: generates a complex description first and simplifies it afterwards



# Data mining and ethics I

Ethical issues arise in practical applications

- Data mining often used to discriminate
  - E.g. loan applications: using some information (e.g. sex, religion, race) is unethical
- Ethical situation depends on application
  - E.g. same information ok in medical application
- Attributes may contain problematic information
  - E.g. area code may correlate with race



# Data mining and ethics II

- Important questions:
  - Who is permitted access to the data?
  - For what purpose was the data collected?
  - What kind of conclusions can be legitimately drawn from it?
- Caveats must be attached to results
- Purely statistical arguments are never sufficient!
- Are resources put to good use?