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i Alg() I itthZ The basic methods

Inferring rudimentary rules
Statistical modeling
Constructing decision trees
Constructing rules
Association rule learning
Linear models
Instance-based learning
Clustering
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= Simplicity first

Simple algorithms often work very well!

There are many kinds of simple structure, eg:
One attribute does all the work
All attributes contribute equally & independently
A weighted linear combination might do
Instance-based: use a few prototypes
Use simple logical rules

Success of method depends on the domain

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Inferring rudimentary rules

1R: learns a 1-level decision tree
I.e., rules that all test one particular attribute

Basic version
One branch for each value
Each branch assigns most frequent class

Error rate: proportion of instances that don’t
belong to the majority class of their
corresponding branch

Choose attribute with lowest error rate
(assumes nominal attributes)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



“@ Pseudo-code for 1R

For each attri bute,
For each value of the attribute, nake a rule as foll ows:
count how often each cl ass appears
find the nost frequent class

make the rule assign that class to this attribute-val ue
Calculate the error rate of the rul es
Choose the rules with the snmallest error rate

Note: “missing” is treated as a separate attribute
value

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Evaluating the weather attributes

Outlook  Temp Humidity Windy Play

_ errors
Sunny Hot High True No
: Outlook Sunny -No 215 4/14
Overcast Hot High False Yes
_ _ _ Overcast -Yes 0/4
Rainy Mild High False Yes _
_ Rainy -Yes 215
Rainy Cool Normal False Yes
_ Temp Hot —No* 214 5/14
Rainy Cool Normal True No _
Mild - Yes 216
Overcast Cool Normal True Yes
_ _ Cool - Yes 1/4
Sunny Mild High False No o _
Humidity High - No 3/7 4/14
Sunny Cool Normal False Yes
, _ Normal -Yes 1/7
Rainy Mild Normal False Yes _
) Windy False -Yes 2/8 5/14
Sunny Mild Normal True Yes
_ _ True —-No* 3/6
Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy High * indicates a tie

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



g Dealing with numeric attributes

Discretize numeric attributes

Divide each attribute’s range into intervals
Sort instances according to attribute’s values
Place breakpoints where class changes (majority class)
This minimizes the total error

Example: temperature from weather data

Outlook Temperature Humidity
Sunny
Sunny

Overcast

Rainy

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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The problem of overfitting

This procedure is very sensitive to noise

One instance with an incorrect class label will probably
produce a separate interval

Also: time stamp attribute will have zero errors
Simple solution:

enforce minimum number of instances in majority
class per interval

Example (with min = 3):

)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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< T Wlth over fitting avoidance

Resulting rule set:

Attribute Errors Total errors
Outlook Sunny -No 2/5

Overcast -Yes 0/4

Rainy -Yes 215
Temperature <775 -Yes 3/10 5/14

>77.5 - No* 2/4
Humidity <82.5 - Yes

>82.5and £95.5 -No

>95.5 ->Yes

False -Yes

True -NoO*

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Discussion of 1R

1R was described in a paper by Holte (1993)

Contains an experimental evaluation on 16 datasets
(using cross-validation so that results were
representative of performance on future data)

Minimum number of instances was set to 6 after
some experimentation

1R’s simple rules performed not much worse than
much more complex decision trees

Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 10
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Discussion of 1R: Hyperpipes

Another simple technique: build one rule for each class
Each rule is a conjunction of tests, one for each attribute

For numeric attributes: test checks whether instance's
value is inside an interval

Interval given by minimum and maximum observed
in training data

For nominal attributes: test checks whether value is one
of a subset of attribute values

Subset given by all possible values observed in
training data

Class with most matching tests is predicted

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 11
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Statistical modeling

“Opposite” of 1R: use all the attributes

Two assumptions: Attributes are
equally important

statistically independent (given the class value)

I.e., knowing the value of one attribute says nothing
about the value of another (if the class is known)

Independence assumption is never correct!
But ... this scheme works well in practice

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 12
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Probabilities for weather data
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Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No [Yes No
Sunny 3 | Hot 2 High 3 4 | False 6 2 9 5
Overcast 4 0 [ Mild 4 2 Normal 6 True 3 3
Rainy 2 | Cool 1
Sunny 2/19  3/5 | Hot 2/9 2/5 High 3/9 4/5 | False 6/9 2/5 9/ 5/
Overcast  4/9 0/5 | Mild 4/9  2/5 | Normal 6/9 1/5 | True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
Qut | ook Tenp Himdity W ndy Pl ay
Sunny Hot H gh Fal se No
Sunny Hot H gh Tr ue No
Over cast Hot H gh Fal se Yes
Rai ny MId H gh Fal se Yes
Rai ny Cool Nor mal Fal se Yes
Rai ny Cool Nor mal Tr ue No
Over cast Cool Nor mal Tr ue Yes
Sunny MId H gh Fal se No
Sunny Cool Nor mal Fal se Yes
Rai ny MId Nor nal Fal se Yes
Sunny MId Nor mal True Yes
Over cast MId H gh True Yes
Over cast Hot Nor mal Fal se Yes
.44 o: Pra d Cd : 010 d Ralny MId th True No
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Probabilities for weather data

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No [Yes No
Sunny 3 | Hot 2 2 High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 2 Normal 6 1 | True 3 3
Rainy 2 | Cool 3 1
Sunny 2/9  3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5 9/ 5/
Overcast 4/9 0/5 |Mid  4/9  2/5 | Normal 6/9 1/5 | True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
A a 13 Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

Likelihood of the two classes
For “yes” = 2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053
For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206
Conversion into a probability by normalization:
P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205
P(*no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



Probability of event H given evidence E:

Prif p)=CRE

A priori probability of H: Pr| H]
Probability of event before evidence is seen

A posteriori probability of H: Pr[ H| E]

Probability of event after evidence is seen

Thomas Bayes

Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 15



=48 Naive Bayes for classification

Classification learning: what'’s the
probability of the class given an instance?

Evidence E = instance

Event H = class value for instance

Naive assumption: evidence splits into parts
(i.e. attributes) that are independent

Pr|E\|H|Pr|E,|H

Pr{H|E]=

...Pr|E |H|Pr|H|

Pr

E]

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 16



@il \Weather data example

Outlook  Temp. Humidity

Windy Play

Sunny Cool High

True ?

Pr| yes|E]= Pr| Outlook= Sunny|yes]

X Pr
X Pr
X Pr

 Temperature= Cool| yes]
 Humidity= High|yes]

 Windy= True|yes]

~979"9%9714

Pr[E]

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



e The “zero-frequency problem”

What if an attribute value doesn’t occur with every

class value?

(e.g. “Humidity = hlg ” for class “YES”)

Probability will be zero!

Pr{Humidity= High|yes]=0

A posteriori probability will also be zero! Pr{yes|E]=0
(No matter how likely the other values are!)

Remedy: add 1 to the co

unt for every attribute

value-class combination (Laplace estimator)

Result: probabilities wil

| never be zero!

(also: stabilizes probabil

ity estimates)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 18
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In some cases adding a constant ditferent

from 1 might be more appropriate
Example: attribute outlook for class yes

2+ul3 44+ ul3 3+ul/3
9+ 9+ O+

Weights don’t need to be equal
(but they must sum to 1)

2+up, 4+ up, 3+up;
9+ 9+ pu 9+

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Training: instance is not included in frequency
count for attribute value-class combination

Classification: attribute will be omitted from
calculation

Example:

Outlook Temp. Humidity Windy Play

? Cool High True ?

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Numeric attributes

e Usual assumption: attributes have a
normal or Gaussian probability
distribution (given the class)

» The probability density function for the
normal distribution is defined by two
parameters:

e Sample mean U u:li .
nim

n

e Standard deviation o _ _ \/ nl 1 S (x-u)
—1 =1

e Then the density function f(x) is

1 (x=p)’ -
f(x)= e 27
V21O r

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 21
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B L T L O L A

Sunny False
Overcast 4 0 , 70, ,80, , 15, , 91, | True
Rainy 3 2

Sunny = False 6/9 2/5
Overcast . ) =10. . True 3/9 3/5

Rainy

Example density value:

(66—73)*

]_ - p)
f(temperature=66|yes)= e %92 =0.0340
( P 7 JV216.2

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 22
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Classifying d 1EW day

Aneray: Outlook  Temp. Humidity Windy Play

Sunny 66 90 true ?

Missing values during training are not
included in calculation of mean and
standard deviation

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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gz Probability densities

Relationship between probability and
density:

Pr[c—§<x<c+%]me><f(c)

But: this doesn’t change calculation of a
posteriori probabilities because ¢ cancels out

Exact relationship:

b
Pr[a<x<b]=f flt)dt

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Multinomial naive Bayes I

Version of naive Bayes used for document classification
using bag of words model

n,n,..,n: number of times word i occurs in document

pP,P, ..., P:probability of obtaining word i when
sampling from documents in class H

Probability of observing document E given class H (based
on multinomial distribution):

Pr[E]H]NN!xﬁ il

=1 1!

Ignores probability of generating a document of the right
length (prob. assumed constant for each class)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 25



=l Multinomial naive Bayes II

Suppose dictionary has two words, yellow and blue
Suppose Pr[yellow | H] = 75% and Pr[blue| H] = 25%
Suppose Eis the document “blue yellow blue”
Probability of observing document:

Pr{|blue yellow blue]|H]~3 /x%5-x 22"~ 2 ~(0.14

Suppose there is another class H' that has
Pr[yellow| H'] = 10% and Pr[yellow | H] = 90%:

Pr[{blue yellow blue||H'|~3 /><—><— 0.24
Need to take prior probability of class into account to make final
classification
Factorials don't actually need to be computed
Underflows can be prevented by using logarithms

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 26
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Naive Bayes: discussion

Naive Bayes works surprisingly well (even if
independence assumption is clearly violated)

Why? Because classification doesn’t require accurate
probability estimates as long as maximum probability
is assigned to correct class

However: adding too many redundant attributes will
cause problems (e.g. identical attributes)

Note also: many numeric attributes are not normally
distributed (- kernel density estimators)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 27
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g Constructing decision trees

Strategy: top down
Recursive divide-and-conqguer tashion

First: select attribute for root node
Create branch for each possible attribute value

Then: split instances into subsets
One for each branch extending from the node

Finally: repeat recursively for each branch, using
only instances that reach the branch

Stop if all instances have the same class

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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sunny overcast

temperature

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Which attribute to select?

/'Y

yes |

yes
yes
no

sunny overcast @i! O

e,/
/s N

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Criterion for attribute selection

Which is the best attribute?
Want to get the smallest tree

Heuristic: choose the attribute that produces the
“purest” nodes

Popular impurity criterion: information gain

Information gain increases with the average
purity of the subsets

Strategy: choose attribute that gives greatest
information gain

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 31
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Computing information

Measure information in bits

Given a probability distribution, the info
required to predict an event is the
distribution’s entropy

Entropy gives the information required in bits
(can involve fractions of bits!)

Formula for computing the entropy:

entropy(p, p, ..., p,)=—p;logp,—p,logp,...—p,log p,

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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. ol Example: attribute Outlook

Outlook = Sunny::
info([2,3])=entropy(2/5,3/5)=-2/5log(2/5)-3/51log(3/5)=0.971 bits
Outlook = Overcast:
info([4,0])=entropy(1,0)=—11og(1)-01log(0)=0 bits

Outlook = Rainy -
info([2,3])=entropy(3/5,2/5)=-3/5log(3/5)-2/5log(2/5)=0.971 bits
Expected information for attribute:
info([3,2],[4,01,[3,2])=(5/14)x0.971 +(4/14)x0+(5/14)x0.971=0.693 bits

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 33
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Computing information gain

Information gain: information betore splitting —
information after splitting
gain(Outlook) = info([9,5]) — info(([2,3],[4,0],[3,2])

=0.940 - 0.693
= (0.247 bits

Information gain for attributes from weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity ) = 0.152 bits
gain(Windy) = 0.048 bits

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 34
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sunny

temperature

sunny

gain(Temperature) = 0.571 bits
gain(Humidity)  =0.971 bits
gain(Windy ) =0.020 bits

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Final decision tree

normal

Note: not all leaves need to be pure; sometimes
identical instances have different classes

[1 Splitting stops when data can’t be split any further

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Properties we require from a purity measure:
When node is pure, measure should be zero

When impurity is maximal (i.e. all classes equally
likely), measure should be maximal

Measure should obey multistage property (i.e.
decisions can be made in several stages):

measure([2,3,4])=measure([2,7])+(7/9)x measure([3,4])

Entropy is the only function that satisfies all
three properties!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 37
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g Properties of the entropy

The multistage property:

r

entropy(p, q, r)=entropy (p, g+ r)+(qg+r)xentropy (== ,——)

g+r’ g+r

Simplification of computation:
info([2,3,4])=—2/9x%log(2/9)-3/9x1og(3/9)-4/9xlog(4/9)
=[-2xlog2-3xlog3-4xlog4+9xlog9]/9

Note: instead of maximizing info gain we
could just minimize information

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 38
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Problematic: attributes with a large number
of values (extreme case: ID code)

Subsets are more likely to be pure if there is
a large number of values

Information gain is biased towards choosing
attributes with a large number of values

This may result in overfitting (selection of an
attribute that is non-optimal for prediction)

Another problem: fragmentation

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 39
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ID code Outlook Temp. Humidity Windy Play

Sunny Hot High
Sunny Hot High

Overcast Hot High
Rainy Mild High
Rainy Cool Normal
Rainy Cool Normal
Overcast Cool Normal
Sunny Mild High
Sunny Cool Normal
Rainy Mild Normal
Sunny Mild Normal
Overcast Mild High
Overcast Hot Normal
Rainy Mild High

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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=l Tree stump for ID code attribute

Entropy of split:

info(ID code)=1info([0,1])+info([0,1])+...+info([0,1])=0 bits

Information gain is maximal for ID code
(namely 0.940 bits)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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(3aln ratio

Gain ratio: a modification of the information gain
that reduces its bias

Gain ratio takes number and size of branches into
account when choosing an attribute
[t corrects the information gain by taking the intrinsic
information of a split into account
Intrinsic information: entropy of distribution of
instances into branches (i.e. how much info do we
need to tell which branch an instance belongs to)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 42
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Computing the gain ratio

Example: intrinsic information for ID code
info([1,1,...,1])=14x(~1/14xlog(1/14))=3.807 bits

Value of attribute decreases as intrinsic
information gets larger

Detfinition of gain ratio:

gain (attribute)
intrinsic info(attribute)

gain ratio(attribute)=

Example:

gain ratio(ID code)=2222 —( 246

3.807bits

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 43
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(Gain ratios for weather data

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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More on the gain ratio

“Outlook” still comes out top

However: “ID code” has greater gain ratio

Standard fix: ad hoc test to prevent splitting on that
type of attribute

Problem with gain ratio: it may overcompensate

May choose an attribute just because its intrinsic
information is very low

Standard fix: only consider attributes with greater
than average information gain

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 45
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Discussion

Top-down induction of decision trees: ID3,
algorithm developed by Ross Quinlan

Gain ratio just one modification of this basic
algorithm

[1 C4.5: deals with numeric attributes, missing
values, noisy data

Similar approach: CART

There are many other attribute selection
criteria!
(But little difference in accuracy of result)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 46



Covering algorithms

Convert decision tree into a rule set
Straightforward, but rule set overly complex
More effective conversions are not trivial

Instead, can generate rule set directly

for each class in turn find rule set that covers
all instances in it
(excluding instances not in the class)

Called a covering approach:

at each stage a rule is identified that “covers”
some of the instances

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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gtsd Example: generating a rule

Possible rule set for class “b”:

Could add more rules, get “perfect” rule set

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Corresponding decision tree:
(produces exactly the same

predictions) - @
e

But: rule sets can be more perspicuous when
decision trees suffer from replicated subtrees

Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas
decision tree learner takes all classes into account

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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gt Simple covering algorithm

Generates a rule by adding tests that maximize
rule’s accuracy

Similar to situation in decision trees: problem of
selecting an attribute to split on
But: decision tree inducer maximizes overall purity

Each new test reduces
IUIG’S Coverage: examples

space of

rule so far

rule after

adding new

term

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Selecting a test

Goal: maximize accuracy
¢ total number of instances covered by rule
p positive examples of the class covered by rule
t — p number of errors made by rule
Select test that maximizes the ratio p/t

We are finished when p/t=1 or the set of
instances can’t be split any further

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 51
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| f ?

RUIAVGCREE t hen recommendati on = hard

Possible tests:

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Modified rule and resulting data

Rule with best test added:

| f astigmatism = yes

t hen recommendati on

= hard

Instances covered by modified rule:

Young
Young
Young
Young
Pre-presbyopic

Pre-presbyopic
Pre-presbyopic
Pre-presbyopic
Presbyopic
Presbyopic
Presbyopic
Presbyopic

Spectacle
prescription
Myope

Myope
Hypermetrope
Hypermetrope
Myope

Myope
Hypermetrope
Hypermetrope
Myope

Myope
Hypermetrope
Hypermetrope

Astigmatism

Tear production
rate
Reduced
Normal
Reduced
Normal
Reduced
Normal
Reduced
Normal
Reduced
Normal
Reduced
Normal

Recommended
lenses

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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gl [urther refinement

| f astigmatism = yes
Current state: and ?

t hen recommendati on = hard

Possible tests:

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Moditied rule and resulting data

Rule with best test added:

| f astigmatism = yes

and tear production rate = nornal
t hen recommendati on = hard

Instances covered by moditied rule:

Young
Young

Spectacle prescription Astigmatism Tear production Recommended
rate lenses

Myope Normal

Hypermetrope Normal

Pre-presbyopic  Myope Normal
Pre-presbyopic  Hypermetrope Normal

Presbyopic
Presbyopic

Myope Normal
Hypermetrope Normal

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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=gt Further refinement

Current state:

| f astigmatism = yes
and tear production rate = nornal

and ?
t hen recommendati on = hard

Possible tests:

Tie between the first and the fourth test

We choose the one with greater coverage

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



=AY The result

IRNEINRNIIC (I astigmatism = yes
and tear production rate = nornal

and spectacle prescription = nyope
t hen recommendati on = hard

)

Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

| f age = young and astigmati sm = yes
and tear production rate = nornal

t hen recommendati on = hard

These two rules cover all “hard lenses”:
Process is repeated with other two classes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



@ Pseudo-code for PRISM

For each class C
Initialize E to the i nstance set
Wiile E contains instances in class C
Create arule Rwith an enpty left-hand side that predicts class C
Until Ris perfect (or there are no nore attributes to use) do
For each attribute A not nentioned in R and each val ue v,
Consi der adding the condition A =v to the left-hand side of R
Select A and v to naxi mze the accuracy p/t
(break ties by choosing the condition wwth the | argest p)
Add A=v to R
Renove the instances covered by RfromE

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 58
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= it Rules vs. decision lists

PRISM with outer loop removed generates a
decision list for one class

Subsequent rules are designed for rules that are not
covered by previous rules

But: order doesn’t matter because all rules predict the
same class

Outer loop considers all classes separately
No order dependence implied

Problems: overlapping rules, default rule required

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 59
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@3 Scparate and conquer

Methods like PRISM (for dealing with one
class) are separate-and-conquer algorithms:

First, identify a usetul rule
Then, separate out all the instances it covers
Finally, “conquer” the remaining instances

Ditference to divide-and-conquer methods:

Subset covered by rule doesn’t need to be
explored any further

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



ged Vining association rules

Naive method for finding association rules:
Use separate-and-conquer method

Treat every possible combination of attribute
values as a separate class

Two problems:
Computational complexity

Resulting number of rules (which would have to be
pruned on the basis of support and confidence)

But: we can look for high support rules directly!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Item sets

Support: number of instances correctly covered
by association rule

The same as the number of instances covered by all
tests in the rule (LHS and RHS!)

Item: one test/attribute-value pair
Item set : all items occurring in a rule

Goal: only rules that exceed pre-defined support

[1 Do it by finding all item sets with the given
minimum support and generating rules from them!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 62



“@ Weather data

Outlook Temp Humidity Windy  Play
Sunny Hot High
Sunny Hot High
Overcast Hot High
Rainy Mild High
Rainy Cool Normal
Rainy Cool Normal
Overcast Cool Normal
Sunny Mild High
Sunny Cool Normal
Rainy Mild Normal

Sunny Mild Normal
Overcast Mild High
Overcast Hot Normal
Rainy Mild High
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S [tem sets for weather data

One-item sets Two-item sets Three-item sets Four-item sets

Outlook = Sunny (5) Outlook = Sunny Outlook = Sunny Outlook = Sunny
Temperature = Hot (2) Temperature = Hot Temperature = Hot
Humidity = High (2) Humidity = High
Play = No (2)

Temperature = Cool (4)  Outlook = Sunny Outlook = Sunny Outlook = Rainy
Humidity = High (3) Humidity = High Temperature = Mild
Windy = False (2) Windy = False
Play = Yes (2)

In total: 12 one-item sets, 47 two-item sets, 39
three-item sets, 6 four-item sets and 0 five-
item sets (with minimum support of two)
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g Generating rules from an item set

Once all item sets with minimum support have
been generated, we can turn them into rules

Example:

Seven (2N-1) potential rules:
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< T RU_IGS fOI' Weather data

Rules with support > 1 and confidence = 100%:

Associ ation rule Sup.
1 Hum di ty=Normal W ndy=Fal se O Pl ay=Yes
2  Tenper at ur e=Cool O Hum di t y=Nor mal
3 Qutl ook=Over cast O Pl ay=Yes
4  Tenperature=Col d Pl ay=Yes O Hum di t y=Nor nal

58 Qutl| ook=Sunny Tenperature=Hot 0O Hum dity=Hi gh

In total:
3 rules with support four
5 with support three
50 with support two
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Item set:

Tenperature = Cool, Humdity = Normal, Wndy = False, Play = Yes (2)

Resulting rules (all with 100% contidence):

Tenperat ure : Fal se OHumdity = Normal, Play Yes
Tenperat ure : Fal se, Humdity = Nornmal 0O Pl ay Yes
Tenperat ure : Fal se, Play = Yes OHum dity = Nor nal

due to the following “frequent” item sets:

Tenperat ure Cool, Wndy = Fal se (2)
Tenperat ure Cool, Humdity = Normal, Wndy = False (2)

Tenperat ure Cool, Wndy = False, Play = Yes (2)
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Generating item sets efficiently

How can we efficiently find all frequent item sets?
Finding one-item sets easy

Idea: use one-item sets to generate two-item sets,
two-item sets to generate three-item sets, ...

If (A B) is frequent item set, then (A) and (B) have to be
frequent item sets as well!

In general: if X is frequent k-item set, then all (k-1)-item
subsets of X are also frequent

[1 Compute k-item set by merging (k-1)-item sets
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Given: five three-item sets
(ABO, (ABD, (ACD, (ACE), (BCD

Lexicographically ordered!

Candidate four-item sets:

(A B CD K because of (ACD (B C D
(ACDE Not OK because of (C D E)

Final check by counting instances in
dataset!

(k—-1)-item sets are stored in hash table

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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“@d Generating rules efficiently

We are looking for all high-confidence rules
Support of antecedent obtained from hash table
But: brute-force method is (2N-1)

Better way: building (¢ + 1)-consequent rules

from c—consequent ones

Observation: (¢ + 1)-consequent rule can only hold
if all corresponding c-consequent rules also hold

Resulting algorithm similar to procedure for
large item sets
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1-consequent rules:

| f Qutl ook = Sunny and Wndy = Fal se and Pl ay
then Humdity = H gh (2/2)

|f Humdity = H gh and Wndy = Fal se and Pl ay
t hen Qutl ook = Sunny (2/2)

Corresponding 2-consequent rule:

|f Wndy = False and Play = No

t hen Qutl ook = Sunny and Humdity = H gh (2/2)

Final check of antecedent against hash table!
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=aesd Association rules: discussion

Above method makes one pass through the data for
each ditferent size item set

Other possibility: generate (k+2)-item sets just after (k+1)-
item sets have been generated

Result: more (k+2)-item sets than necessary will be
considered but less passes through the data

Makes sense if data too large for main memory

Practical issue: generating a certain number of rules
(e.g. by incrementally reducing min. support)
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Other issues

Standard ARFF format very inefficient for typical
market basket data

Attributes represent items in a basket and most
items are usually missing

Data should be represented in sparse format
Instances are also called transactions

Confidence is not necessarily the best measure

Example: milk occurs in almost every supermarket
transaction

Other measures have been devised (e.g. lift)
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Linear models: linear regression

Work most naturally with numeric attributes

Standard technique for numeric prediction
Outcome is linear combination of attributes
X=wW,+w,a,+W,a,+...+ w,a,
Weights are calculated from the training data
Predicted value for first training instance a®

Wody +Widy '+ Wy +...+ wiay =Y, wa;’

(assuming each instance is extended with a constant attribute with value 1)
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g Vinimizing the squared error

Choose k +1 coefficients to minimize the squared
error on the training data
Squared error: , |

L (x7— f:o Wjaﬂ-”)z

Derive coefficients using standard matrix
operations

Can be done if there are more instances than
attributes (roughly speaking)

Minimizing the absolute erroris more ditficult
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Classification

Anyregression technique can be used for
classification

Training: perform a regression for each class, setting
the output to 1 for training instances that belong to
class, and 0 for those that don't

Prediction: predict class corresponding to model
with largest output value (membership value)

For linear regression this is known as multi-
response linear regression

Problem: membership values are not in [0,1]
range, so aren't proper probability estimates
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Sl 1 inear models: logistic regression

Builds a linear model for a transformed target
variable
Assume we have two classes

Logistic regression replaces the target

Pllla, a, ....,a,]

by this target

P[1|31,az,"“’ak]
10g<(1—P[1|31,az, ..... ak]) )

Logit transformation maps [0,1] to (-, +)
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gt [.ogit transformation

Resulting model:

|

Pr(lla, a, ..., a ===

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Model with w, = 0.5 and w, = 1:

Parameters are found from training data using
maximum likelihood

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Sl Maximum likelihood

Aim: maximize probability of training data wrt

parameters
Can use logarithms

of probabilities and maximize

log-likelihood of model:

2 (1-x")log(1-Pr[1|a},a),...,a])+
x"log Pr[1|d/, &}, ... a@?]

where the x¥ are either Q or 1

Weights w need to be chosen to maximize log-

likelihood (relatively simple method: iteratively
re-weighted least squares)
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S JB Multiple classes

Can perform logistic regression
independently for each class
(like multi-response linear regression)

Problem: probability estimates for ditferent
classes won't sum to one

Better: train coupled models by
maximizing likelihood over all classes

Alternative that often works well in
practice: pairwise classification
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=4 Pairwise classification

Idea: build model for each pair of classes, using only
training data from those classes

Problem? Have to solve k(k-1)/2 classification
problems for k-class problem

Turns out not to be a problem in many cases
because training sets become small:

Assume data evenly distributed, i.e. 2n/k per
learning problem for 7 instances in total

Suppose learning algorithm is linear in n

Then runtime of pairwise classification is
proportional to (k(k-1)/2)x2n/ k) =(k-1)n
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Linear models are hyperplanes

Decision boundary for two-class logistic regression is
where probability equals 0.5:

Pr(1

a, a, ..., a,]=1/(1+exp(-w,—w,a,—...—w,a,))=0.5

which occurs when —Wy—Ww,a,—...—w,a,=0

Thus logistic regression can only separate data that
can be separated by a hyperplane

Multi-response linear regression has the same
problem. Class 1 is assigned if:

wl+wla +...+wla>wd+wa, +..+w?a,

(W -w+(wl-w)a +...+(W'-w?)a,>0

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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=8 Linear models: the perceptron

Don't actually need probability estimates if all we want
to do is classification

Different approach: learn separating hyperplane
Assumption: data is linearly separable

Algorithm for learning separating hyperplane: perceptron
learning rule

Hyperplane: 0=w,a,+ W, a,+ w,a,+...+ w,a,

where we again assume that there is a constant attribute
with value 1 (bias)

If sum is greater than zero we predict the first class,
otherwise the second class
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gt The algorithm

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance | in the training data

If | is classified incorrectly by the perceptron
If | belongs to the first class add it to the wei ght vector
el se subtract it fromthe weight vector

Why does this work?

Consider situation where instance a pertaining to the first
class has been added:

(wy,+4a,)a,+(w,+a,)a,+(w,+a,)a,+...+(w,+a,)a,
This means output for a has increased by:

a,a,+a,a,+a,a,+...+a,a,
This number is always positive, thus the hyperplane has moved into the

correct direction (and we can show output decreases for instances of
other class)
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Perceptron as a neural network
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[Linear models: Winnow

Another mistake-driven algorithm for finding a
separating hyperplane

Assumes binary data (i.e. attribute values are
either zero or one)

Difference: multiplicative updates instead of additive
updates

Weights are multiplied by a user-specified
parameter a > I(or its inverse)

Another difference: user-specitied threshold
parameter 0

Predict first class if Wyt W, a,+ W, a,+ ..+ W,a>0
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The algo rithm

whil e sone i nstances are m scl assified
for each instance a in the training data
classify a using the current weights
If the predicted class is incorrect
If a belongs to the first class

for each a that is 1, multiply w by al pha

(if a is 0, leave w unchanged)
ot herw se

for each a that is 1, divide w by al pha

(if a is 0, Ieave w unchanged)

Winnow is very etfective in homing in on relevant
features (it is attribute efficient)

Can also be used in an on-line setting in which
new instances arrive continuously

(like the perceptron algorithm)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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A Balanced Winnow

Winnow doesn't allow negative weights and this can be a
drawback in some applications

Balanced Winnow maintains two weight vectors, one for each
class:

whi | e sone instances are m scl assifi ed
for each instance a in the training data
classify a using the current weights
If the predicted class is incorrect

If a belongs to the first class
for each a that is 1, multiply w* by al pha and divide w" by al pha
(if a is 0, leave w™ and w’ unchanged)

ot herw se
for each a that is 1, multiply w™ by alpha and divide w" by al pha

(if a is 0, leave w* and w’ unchanged)

Instance is classified as belonging to the first class (of two
classes) if:
(wy —wy )a,+(w, —wy)a,+...+(w—w; )a,>0
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Instance-based learning

Distance function defines what’s learned

Most instance-based schemes use
Euclidean distance:

V@l -d?y+(a) -a?)+...(a) -a?)
a and a?: two instances with k attributes

Taking the square root is not required when
comparing distances

Other popular metric: city-block metric
Adds ditferences without squaring them
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Normalization and other issues

Different attributes are measured on different
scales [1 need to be normalized:

a.=

I” maxv~minv,

v.: the actual value of attribute i

Nominal attributes: distance either 0 or 1

Common policy for missing values: assumed to be
maximally distant (given normalized attributes)
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Finding nearest neighbors etficiently

Simplest way of finding nearest neighbour: linear
scan of the data

Classification takes time proportional to the product of
the number of instances in training and test sets

Nearest-neighbor search can be done more
efficiently using appropriate data structures

We will discuss two methods that represent training
data in a tree structure:

kD-trees and ball trees
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Using kD-trees: example
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More on kD-trees

Complexity depends on depth of tree, given by logarithm
of number of nodes

Amount of backtracking required depends on quality of
tree (“square” vs. “skinny” nodes)

How to build a good tree? Need to find good split point
and split direction

Sp.
Sp

it direction: direction with greatest variance

it point: median value along that direction

Using value closest to mean (rather than median) can be
better if data is skewed

Can apply this recursively
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Building trees incrementally

Big advantage of instance-based learning: classifier
can be updated incrementally

Just add new training instance!
Can we do the same with kD-trees?
Heuristic strategy:
Find leaf node containing new instance
Place instance into leatf if leaf is empty

Otherwise, split leaf according to the longest
dimension (to preserve squareness)

Tree should be re-built occasionally (i.e. if depth
grows to twice the optimum depth)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Sl Ball trees

Problem in kD-trees: corners

Observation: no need to make sure that
regions don't overlap

Can use balls (hyperspheres) instead of
hyperrectangles

A ball tree organizes the data into a tree of k-
dimensional hyperspheres

Normally allows for a better fit to the data and
thus more efficient search
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Nearest-neighbor search is done using the same
backtracking strategy as in kD-trees

Ball can be ruled out from consideration if: distance
from target to ball's center exceeds ball's radius plus
current upper bound

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)
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Building ball trees

Ball trees are built top down (like kD-trees)

Don't have to continue until leaf balls contain just two
points: can enforce minimum occupancy
(same in kD-trees)

Basic problem: splitting a ball into two
Simple (linear-time) split selection strategy:
Choose point farthest from ball's center
Choose second point farthest from first one

Assign each point to these two points

Compute cluster centers and radii based on the two
subsets to get two balls
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Discussion of nearest-neighbor learning

Often very accurate
Assumes all attributes are equally important
Remedy: attribute selection or weights

Possible remedies against noisy instances:
Take a majority vote over the k nearest neighbors
Removing noisy instances from dataset (difficult!)

Statisticians have used k-NN since early 1950s
If n - 0and k/n - 0, error approaches minimum

kD-trees become inefficient when number of
attributes is too large (approximately > 10)

Ball trees (which are instances of metric trees) work
well in higher-dimensional spaces
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More discussion

Instead of storing all training instances, compress them
into regions

Example: hyperpipes (from discussion of 1R)

Another simple technique (Voting Feature Intervals):
Construct intervals for each attribute
Discretize numeric attributes
Treat each value of a nominal attribute as an “interval”
Count number of times class occurs in interval

Prediction is generated by letting intervals vote (those that
contain the test instance)
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i Clustering

Clustering techniques apply when there is no class to be
predicted
Aim: divide instances into “natural” groups

As we've seen clusters can be:
disjoint vs. overlapping
deterministic vs. probabilistic
flat vs. hierarchical

We'll look at a classic clustering algorithm called k-

means
k-means clusters are disjoint, deterministic, and flat
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The k-means algorithm

To cluster data into k groups:
(kis predefined)

Choose k cluster centers
e.g. at random

Assign instances to clusters
based on distance to cluster centers

Compute centroids of clusters

Gotostep 1
until convergence
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Discussion

Algorithm minimizes squared distance to cluster
centers

Result can vary significantly
based on initial choice of seeds

Can get trapped in local minimum
Example:

initial
cluster
centres

instances

To increase chance of finding global optimum: restart
with different random seeds

Can we applied recursively with k=2
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=gl Faster distance calculations

Can we use kD-trees or ball trees to speed
up the process? Yes:

First, build tree, which remains static, for all
the data points

At each node, store number of instances and
sum of all instances

In each iteration, descend tree and find out
which cluster each node belongs to

Can stop descending as soon as we find out that a
node belongs entirely to a particular cluster

Use statistics stored at the nodes to compute new
cluster centers
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Bayes’ rule stems from his “Essay towards solving a
problem in the doctrine of chances” (1763)

Difficult bit in general: estimating prior probabilities
(easy in the case of naive Bayes)

Extension of naive Bayes: Bayesian networks (which
we'll discuss later)

Algorithm for association rules is called APRIORI

Minsky and Papert (1969) showed that linear
classifiers have limitations, e.g. can’t learn XOR

But: combinations of them can (- multi-layer neural
nets, which we'll discuss later)
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