
 1

CS4432 D Term 2014

Project 2

Develop and Evaluate Indexes, Join Processing Methods
and Query Optimizer Strategies for SimpleDB Database

System

Assigned: April 17th, 2014
Due: May 1st, 2014 (11:59PM)

This is a relatively large project. We encourage you to budget your time wisely to assure
successful completion of this project. Practice your managerial skills, and make sure to put
together a task schedule and to regularly verify that your team is indeed on track. In this project,
you will mainly touch the following packages in the SimpleDB software system:

simpledb.index
simpledb.index.btree
simpledb.index.hash
simpledb.index.planner
simpledb.index.query
simpledb.materialize
simpledb.opt
simpledb.parse
simpledb.planner
simpledb.query
simpledb.record

You will learn about disk layout, indexing, query processing, and query optimization.

The project is large yet modular. That is, several of the core project tasks can be done in
parallel. Furthermore, several of the tasks do not depend on each other, and partial credit can
be obtained for some of them accordingly. As example of a possible task distribution, one
team member could work on the SQL parser, while the second team member may be working
on the index implementation. Whoever finishes first can start exploring the later tasks of the
sort-and-merge join strategy. Similarly, later on in Stage 2 of the project, the evaluation and
performance testing can again be tackled with a divide and conquer strategy.

 2

Task 1: Index Type MetaData Preparation

The SimpleDB system by default always uses a static hash index whenever you specify an
index in SQL using the “create index on relation (attribute)” command. In this project task,
you will now enable the support for different types of indices.

In particular, you will first modify the simpledb.parse.Parser.java file to support the
specification of different type of indices. In particular, you will override the createIndex()
method, so it can parse the statement “create [IndexType] index [IndexName] on [TableName]
([FieldName])”. The type of the index will be denoted as { sh, bt, eh } which stands for
static hash, B-Tree and extensible hash index, respectively.

Second, you will also need to change the BasicUpdatePlanner to the IndexUpdatePlanner.
While the BasicUpdatePlanner is responsible for performing the updates on data records, the
IndexUpdatePlanner takes care of also updating the index files of all indices associated with
the updated relation. This way you assure that your new index will be maintained up-to-date
by the SimpleDB system.

Third, you will need to modify the CreateIndexData class to hold the information about the
index type that has been constructed over a given relation and attribute pair. This
CreateIndexData object will be passed the IndexMgr as metadata using the
executeCreateIndex() method in the IndexUpdatePlanner:

public int executeCreateIndex(CreateIndexData data, Transaction tx) {
 SimpleDB.mdMgr().createIndex(data.indexName(), data.tableName(),
data.fieldName(), tx);
 return 0; }

The executeCreateIndex() method then calls createIndex() in the MetaDataMgr class.

public void createIndex(String idxname, String tblname, String fldname,
Transaction tx) {
 idxmgr.createIndex(idxname, tblname, fldname, tx); }

It then calls createIndex()method in IndexMgr class.

public void createIndex(String idxname, String tblname, String fldname,
Transaction tx) {
 RecordFile rf = new RecordFile(ti, tx);
 rf.insert();
 rf.setString("indexname", idxname);
 rf.setString("tablename", tblname);
 rf.setString("fieldname", fldname);
 rf.close();

 }

Fourth, you need to override or overload methods in IndexUpdatePlanner, MetaDataMgr
and IndexMgr so that the type information about the new index is passed along correctly.

 3

Currently, only three properties, namely, the index name, table name and filed name, are stored
by the IndexMgr object. But now you will need to make sure that the IndexMgr also stores
the index type name.

Up to this point, we have prepared the relevant information about the metadata concerning the
index type and its association with which table and which attributes. However, so far the
actual index has not yet been created. The actual index structure needs to be created when for
the first time a tuple is actually inserted into the relation! Thereafter, after each update of the
underlying relation, the index then needs to be maintained.

Remember from above, that SimpleDB system uses the IndexUpdatePlanner to handle both
the updates to the table and updates to the index. You need to make sure the index type is
passed to IndexInfo as well.

So whenever a table is changed (insert and delete) by a transaction, IndexMgr would provide
an IndexInfo object which contains the index type information, if any, for each fieldname in
that table. The IndexUpdatePlanner will call the corresponding methods as needed. One
example may be :

public int executeDelete(DeleteData data, Transaction tx)
{
/*
Codes for delete the data and modify the index,
If no index, just delete the data

*/}

Important Note: In this Project, the “Update” statement will not be tested. Therefore, you can
focus only on making the “Insert” and “Delete” operations working.

 4

Task 2: Index Design and Development

Currently, IndexInfo.open() always creates a static hash index. Your task is to change that,
so that IndexInfo.open() would instead create the correct index type based on the type
information that had been indicated in the earlier create index statement. In this task, you
would first implement your own extensible hash index. Your extensible hash index should
implement the Index interface which the B-tree and the static hash index in the current
SimpleDB system are both implementing. All other details about the index design and
development are under your jurisdiction.

You must provide a description of your design challenges and final design decisions. Also,
lastly you need to provide us your detailed testing plans that you utilized to convince yourself
(and also us) that your extensible hash index code implements the index solution. This clearly
must be done before doing actual performance. For this testing, we suggest that again as in
Project1, you will override the toString() method of your extensible hash index class, so you
and we can print out the current index information.

To fully integrate your new index solution into the SimpleDB engine so that SimpleDB query
optimizer recognizes and makes use of indices in the query plan, you will need to change the
BasicQueryPlanner in SimpleDB to the HeuristicQueryPlanner.

 5

Task 3: Evaluation Index-based Query Performance – Selection and Join Queries

In this task you will test the effectiveness of your newly designed index against other query
processing alternatives.

For this, you need to follow the testing setup as explained below, and in addition you can
optionally perform additional testing scenarios of your own choice. First, please create four
different tables containing 100,000 tuples each. Each table should contain roughly the same
(randomly generated) data. For this, we will provide you with a small java jdbc program via
MyWPI to create these tables.

• The first table Table1 would have no index;
• The second table Table 2 would have a static hash index
• The third table Table 3 would have an extensible hash index,
• The last table Table4 would have a B-tree index.

To test the relative effectiveness of different indexing solutions versus no index, you should
query all 4 tables with a selection query of the form

”Select [ALL Attributes] from [YourTABLE] Where [YourAttribute] = [SomeConstant]”

Again, you need to keep track of performance statistics you observe about these runs. That is,
you should keep track of the relative runtime of each query, and in addition you should also
report the number of IOs.

Furthermore, you also should design a testing scenario to better understand how indices are
being used for join query processing and their effectiveness in speeding up join query
processing. For this testing scenario, you would now also create a fifth table (Table 5) using
the same random number generated above, which only holds 50,000 records. This Table 5 will
NOT have any indices defined on it. Now you can test the join performance by querying your
tables with four queries similar to the testing scenario above always involving join with Table5
as indicated below:

 “Select [ALL ATTRIBUTEs] from Table5, TableX Where [Table5.Attribute] =
[TableX.Attribute]”.

DataGenerator Tool: This tool is given to you as .txt file, you should make a .java file, and
make sure it compiles and connects to the DB. Variable “maxSize” controls how many tuples
to generate in the tables, so adjust this variable as requested in the project description.

**If for any reason the tool did not compile, just take its logic and write your similar code (it
should be straightforward)

 6

Where “TableX” will be replaced by Table1, Table2, Table3, or Table4 in the different queries.
Again, as above, you need to keep track of the running time and I/O counts for each query.

 7

Task 4: Develop SmartMergeJoin in SimpleDB

The SimpleDB MergeJoin will always re-sort all records of the two participating tables
regardless of the records are already sorted or not. This is not very efficient. In this task, you
need to improve that. As first step, you need to keep track of whether a table has been sorted or
not (you may do so in TableInfo.) At the beginning, none of the tables are sorted. The current
SortScan of the sortmergejoin will sort the table and write the records back out to a
temporary table for later use (materialization). However, the original table is never sorted.

You need to extent the SortScan class, so that your modified SortScan sorts the base table as
well and then sets the Sorted flag to true, thus indicating the table has been sorted. You could
do this either by copying the sorted file back into the existing file blocks, or alternatively you
could record the appropriate information in the system metadata. In particular, you may replace
the RecordFile of the table you are sorting to the RecordFile of the temp table, or copy every
record in the RecordFile of temp table to the RecordFile of your base table.

For simplicity, whenever a table is scanned by UpdateScan (meaning it may possible have
been updated and thus may be out of order), the sorted flag should be re-set to false.
UpdateScan here refers to the possibly update of data in the underling relation.

You also need to extent the MergeJoin class, so it uses your improved SortScan. Thus your
improved SmartMergeJoin Operator would sort the tables first only if the tables are not sorted
already. So that if it gets lucky, it can completely skip the first phase of the SortJoin method,
the sorting phase.

Task 5: Testing SmartSortMergeJoin in SimpleDB

In order to test your SortMergeJoin operator, you would need to implement your own Query
Planner, which always uses SortMergeJoin. for query processing, instead of using the given
HeuristicQueryPlanner. Name your newly designed QueryPlanner the
ExploitSortQueryPlanner. For this, your ExploitSortQueryPlanner would need to
implement the QueryPlanner Interface, which is also implemented by both
BasicQueryPlanner and HeuristicQueryPlanner.

You would create two tables each with 100,000 records and no index. Write a query to sort
merge join these two tables. Keep track of the runtime of this query execution process. Then
execute the identical query a second time. This time your second run should be much faster
than the first run, because it should skip the first sorting process.

Note on SimpleDB: SimpleDB requires the index to be created at the start while the
relational table is still empty. Only data records that are inserted into the indexed table,
after the index has been set up will be retrievable via the index.

 8

Deliverables (Packaged in one single zip file)

1. A project2 report file (doc or pdf) that contains at least the following information:
a. Precise installation instructions for the CS4432 staff to be able to run your

modified SimpleDB. We will blindly follow your step-by-step instructions. In
some circumstances, we may also set up a one-to-one meeting with your team in
which you will discuss your findings related to project1. This also includes an
overview of what your document contains.

b. Queries used in your testing should be described. In addition, we will also
provide you with one small JDBC file that you should use for doing one
performance testing run of both the index-based SQL selection queries and the
join-based SQL queries. Also, do submit your results for this test.

c. Design description in English of your effort in designing and developing a
clean extension of the SimpleDB index structure, query planner, and other
classes you have touched.

2. Your testing scenarios for verifying that your extensible index solution works
correctly, and is in fact being exploited by the query optimizer for query optimization.
This should describe all testing scenarios that you have designed, a rationale for each
test case, what it tests and how, and how you determined that your code indeed is
correct. This should include the output of your key testing runs that you have
conducted above.

3. Results of your experimental study showing the performance of your system, which
displays the number of I/Os and the time it took to complete different Selection queries
and Join queries. Provide a clear analysis of your results. Did they match your
expectation in terms of performance results? Discuss the respective performance
differences of your methods, or lack thereof.

4. Bug report. Make sure you report all aspects of your system that are not properly
working. If your code is detected to not be working, or to have serious omissions and
you have not documented this shortcoming, you will be graded more harshly.

5. Fully working and self-contained code, supported with inline comments and
indications of what lines of code were changed and why. You will be graded not only
on the correctness of your code, but also its clarity and the quality of your software
documentation. You should also include in your project submission a DIFF file (using
Vim Diff or another other tool) showing the differences between your modified and the
prior version of the simpleDB code base.

Note on Grading

Project 2 will have higher weight than Project 1. That is, Project 1 will be 8% of the
total grade while Project 2 will be 12%.

What to Submit
 A single file .zip from each team containing the files mentioned above.
 Make sure in the report file the team member names are written.

Where to Submit
 Only through the Blackboard System.

