CS4432 D-Term 2014
Project 1

Implementing a Better Buffer Manager for SimpleDB
Database System

Release Date: March 25, 2014
Due Date: April 10, 2014 (11:59PM)
Total Points: 120 Points



About SimpleDB System

This semester we will work with the SimpleDB database system - a multi-user transactional
database server written in Java, which interacts with Java client programs via JDBC. SimpleDB is
a stripped-down open-source system developed by E. Sciore for pedagogical use. We have
chosen this as foundation for the CS4432 projects to give you a chance to gain experience with
database systems internals — while attempting to avoid the inherent complexity (aka steep
learning curve) that would come with any industrial-strength system. Instead, the code for
SimpleDB is clean and compact. Thus, the learning curve is small. Everything about SimpleDB
is intentionally bare bone. It implements only a small fraction of SQL and JDBC, and does little
or no error checking.

Task 1: Warm-up and Setup [10 Points]

As first step towards this project, it is essential that you get SimpleDB installed and become
comfortable with its use. Hence, task 1 is to download SimpleDB and to play with it. The
instructions for downloading the source and installing it on your machine can be found on the
course website. You should use Java 1.6 or latter, otherwise you may get error messages.

After you have installed the SimpleDB server on your machine, then you are to create a small
application schema (2 tables is sufficient ) and design a few SQL queries. For this you need to
utilize the JDBC interface provided with SimpleDB. So write a JDBC program to create and
populate the two tables, and to search for some objects in this table and print their values based
on some condition.

Please note that SimpleDB only supports a small subset of SOL! So it if does not work for a given
command, it is probably not supported. Trace through the code and run some tests to get your
bearings.

We strongly recommend using a Java IDE such as Eclipse (www.eclipse.org) to manage your
code. IDE’ such as eclipse allow you to compile, debug and execute within the same environment
thus speeding up your programming time.

Task 2: Buffer Management.

The Current Buffer Management: Next, study the SimpleDB code in depth. In particular,
familiarize yourself with the SimpleDB file and buffer manager. You can think of the current
implementation of the buffer pool as fixed size array. When a (disk) block is requested by a
transaction, SimpleDB reads it from disk and stores it in a buffer. We then say that the buffer is
pinned by the transaction. Once the transaction is done, this buffer will be unpinned.

You will quickly observe that the SimpleDB buffer manager is very simplistic and thus
inefficient. Accesses of the buffer pool are inefficient due to the reasons indicated below.

Every time the DBMS needs to find a free buffer to store a disk block or to check whether a block
is in the buffer or not, it sequentially scans the buffer pool. In the worst case, this could be a
complete scan through the entire buffer pool. Clearly, it would be more effective if instead more
intelligent policies were used.

Project 1 Objective: The key objective of project 1 is now to improve the buffer manager of
SimpleDB so to fix the above listed problems and thus make it more efficient. You are free to
inherit and then override any method that you would like, as long as you maintain the method
interfaces to be backwards compatible (so not to break simpleDB) . Think about what makes
sense to do, and clearly document in your project report your design solution. As suggestion, it

2



would make sense to work in the package simpledb.buffer and to start by modifying the
following classes: Buffer, BasicBufferMgr, and BufferMgr.

Task 2.1) Efficient finding of Empty Frame [20 Points]

Your first task is to design an efficient technique that enables the Buffer Manager to find an
empty frame fast (in constant time). You may use the methods suggested in class, or you may
come up with other methods. Just make sure that this operation can be done in constant time.

Task 2.2) Efficient Search for a Given Disk Block [20 Points]

Your second task is to design an efficient technique that enables the Buffer Manager to figure out
whether or not a given disk page, say D, exist in the buffer pool. If exist, then you should be able
to return the frame# that contain D efficiently. You may use the methods suggested in class, or
you may come up with other methods.

Task 2.3) Efficient Replacement Policy [20 Points]

You're their task is to implement buffer replacement policies to be used when the buffer is full
and we need to choose a frame to evict from the pool. You are required to implement two
replacement policies, which are LRU & Clock policies covered in class. These policies may
require you to store and maintain more metadata information for each frame in the buffer pool. In
your design, try to make it easy to switch between which policy is used, e.g., you may use a
configuration parameter that specifies which policy is active (used).

Task 2.4) Other Basic Functionalities [10 Points]

The Buffer Manager has to also maintain metadata information indicating whether or not a given
frame is pinned (implement that as a pin counter not a Boolean flag). Another information is
whether or not a given allocated frame is dirty. An evicted memory page from the buffer pool
should be written back to disk if (and only if) it is dirty (has been modified).

Task 2.5) Reporting Functions [10 Points]

Implement or extend the toString methods for Buffer, BufferMgr, and BasicBufferMgr. The
purpose of these methods is to display the contents of the buffer for testing purposes. The method
for Buffer should show the buffer's id, the block it is allocated to, and whether the buffer is
pinned. The method for the other two classes should show the information for each buffer. You
will likely need this to do your testing, plus you can then use these printouts subsequently to
produce output required as deliverable for this project 1 to show us your system is functioning
correctly

Task 2.6) Testing Program [20 Points]

You must write a test program along with a variety of testing scenarios. Explain these scenarios
in your report. You need to show us that you did good testing and your system is working in all
scenarios and has not broken SimpleDB. For instance, it would be excellent if you could
continue to again run the example SQL queries you had set up for part 1 above, and assure that
they still function properly. Your test program should demonstrate (and print out) that the
buffers are really allocated using the chosen policy, e.g., LRU or Clock, by doing judicious
pinning and unpinning. Note that the call to SimpleDB.init causes the buffers to get used, so your
test program won't be able to start from a clean slate.




Task 2.7) Code Documentation [10 Points]

Write comments on each and every function that you add or modify in SimpleDB. Your
comments should always start with string “CS4432-Projectl:” and then a description of what you
are adding or changing. The TAs may look for these comments to understand what you did and to
make sure you documented your code properly.

Deliverables

1.

A README.txt file including precise installation instructions for the CS4432 staff to be
able to run your modified SimpleDB. We will blindly follow your step-by-step
instructions! In addition, we may also set up a one-to-one meeting with your team in
which you will discuss your findings related to projectl.

Important: This file should start with the names of the team members

A Examples.sql file descripting your small SQL application schema and chosen queries,
as well output produced (Taskl). This should explain what subset of queries you are
using to ensure that the system is working before and after your modifications.

A Design.txt file containing the design description in English of your effort in designing
and developing a clean extension of the SimpleDB buffer manager, including the design
of your two replacement policies, all associated data structures and metadata information,
and the key places in SimpleDB that require changes to realize this buffer extension.

A ExtendedSimpleDB.zip file containing a fully working and self-contained code,
carefully supported with inline comments as described in Task 2.7. You will be graded
not only on the correctness of your code, but also its cleanness and the quality of your
software documentation.

A Testing.txt file containing your testing harness for testing correctness, along with a
description of the strategy you have chosen to test your enhanced system (Task 2.6).
Your tests should not only test the new functionalities, but also make sure the original
SimpleDB is not broken. The file should describe all testing scenarios that you have
designed, a rationale for each test case, what it tests and how, and how you determined
that your code indeed is correct.

Important: This file should include printout the shows the output from each test and you
should describe how this output shows correct execution. For example, the output should
display the status of the buffer pages before and after some actions and indicate to us why
this matches the expected behavior.

A Bugs.txt file that contains a list of bugs and components not working in your system.
Make sure you report all aspects of your system that are not properly working. If your
code does not work or at least has serious omissions and you have not properly
documented this shortcoming, you will be graded more harshly.

What to Submit

A single file .zip from each team containing the 6 files mentioned above.

Where to Submit

Only through the Blackboard System.



