Transport Layer

CS 3516 - Computer Networks

A NS u Y .

° 3.1 Transport-layer
* 3.2 Multiplexing and
* 3.3 Connectionless

* 3.4 Principles of

Chapter 3 outline

* 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management
° 3.6 Principles of
congestion control
°® 3.7 TCP congestion
control

services
demultiplexing
transport: UDP

reliable data transfer

Chapter 3: Transport Layer
Goals:

* Understand
principles behind

° Learn about transport
layer protocols in the

transport layer Internet:

services: - UDP: connectionless

- Multiplexing / transport
demultiplexing - TCP: connection-oriented

- Reliable data transfer transport

- Flow control - TCP congestion control

- Congestion control

A N W e

Transport vs. Network layer

Household analogy:
network layer: logical 12 kids sending letters to 12
communication kids

between hosts ° processes = kids
transport layer: logical ~|* 9PP ’I“ESS“Q“ = letters in
communication envelopes

* hosts = houses
between processes
~ reli h transport protocol = Ann
relies OI?II enhances, and Bill (collect mail from
network layer services siblings)
network-layer protocol =
postal service

WP

Transport Services and Protocols

Provide /ogical communication
between app processes
running on different hosts
Transport protocols run in
end systems
- send side: breaks app
messages into segments,
passes to network layer
- receive side: reassembles
segments into messages,
passes to app layer
More than one transport
protocol available to apps
- Internet: TCP and UDP

Internet Transport-layer Protocols

reliable, in-order

delivery (TCP)

- congestion control

- flow control

- connection setup

unreliable, unordered

delivery: UDP

- no-frills extension of
“best-effort” IP

services not available: %

- delay guarantees

- bandwidth guarantees

5 [ohsicar

° 3.1 Transport-layer
services

* 3.2 Multiplexing and
demultiplexing

° 3.3 Connectionless
transport: UDP

° 3.4 Principles of

[5

reliable data transfer

Chapter 3 outline

° 3.5 Connection-oriented

transport: TCP

- segment structure

- reliable data transfer
- flow control

- connection management

* 3.6 Principles of

congestion control

® 3.7 TCP congestion

control

° “no frills,” "bare bones"
Internet transport
protocol

* “best effort" service, UDP
segments may be:

- lost
- delivered out of order
to app

* connectionless:

- no handshaking between
UDP sender, receiver

- each UDP segment
handled independently
of others

W I .

[

UDP: User Datagram Protocol [RFC 768]

Why is there a UDP?

°* no connection
establishment (which can
add delay)

simple: no connection state
at sender, receiver

small segment header

no congestion control: UDP
can blast away as fast as
desired

segment

Sender:

* treat segment contents
as sequence of 16-bit
integers

* checksum: addition (1's
complement sum) of
segment contents

° sender puts checksum
value into UDP checksum
field

A N W e

UDP: checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

Receiver:
° compute checksum of
received segment
* check if computed checksum
equals checksum field value:
- NO - error detected
- YES - no error detected.
But maybe errors
nonetheless? More later

WP

[

Chapter 3 outline

* 3.5 Connection-oriented

° 3.1 Transport-layer transport: TCP

services

. . . - segment structure
3.2 Mu!TIp|€f<ln9 and - reliable data transfer
demultiplexing - flow control

® 3.3 Connectionless - connection management
transport: UDP * 3.6 Principles of

° 3.4 Principles of congestion control
reliable data transfer = 3.7 TCP congestion

W -

I

control
WPl
UDP: more
* Often used for streaming)
(video/audio) or game apps 32 bits
- loss tolerant Length, in | Source port# dest port #
- rate sensitive bytes of UDP [~ length checksum
. segment,
other UDP uses including
- DNs header
- SNMP
° reliable transfer over UDP: Application
add reliability at data
application layer (message)
- application-specific
error recovery!
UDP segment format

A BN W .

Internet Checksum Example

* Example: add two 16-bit integers

sum 1
checksum 0

° Af receiver, add 2 integers and checksum ... should
be all I's. If not, bit error (correction? - next)

Chapter 3 outline

° 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management

° 3.1 Transport-layer
services

° 3.2 Multiplexing and
demultiplexing

° 3.3 Connectionless
transport: UDP * 3.6 Principles of

* 3.4 Principles of congestion control
reliable data transfer = 3.7 TCP congestion

control

layer

receiver
process

{felcbie channel

opplication

transport
layer

(Ereiasie chorme)d

{a) provided senvice (b} service implementation

* characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of Reliable data fransfer
° important in app., transport, link layers
° top-10 list of important networking topics!
=]

° top-10 list of important networking topics!

Principles of Reliable data fransfer

important in app., transport, link layers

{a) provided service

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Reliable Data Transfer: Getting Started

rdt_send() : called from above,
(e.g., by app.). Passed data to

deliver_data(): called by
rdt to deliver data to upper

deliver to receiver upper layer

rdt_send() i

[ioia][deliver data()

udt_send (!t [pocksr]

send [elioble data reliable dota receive
id rrc:nsff_-(pn_:\?occl transfer protocol id
SIde |isending side) receiving side] side

$odt zovld

L[Eunrelicble channel IJ

Principles of Reliable Data Transfer

° important in app., transport, link layers
° top-10 list of important networking topics!

D E
32
ao
(=%
[s]
elabie channel P _sand i} Foolfdeliver datat) o
é g freficble data refiable data E
& rarsfer protocoll transfer protocoll w
8 B (zending sde) (receiving sicle) “;
= udt_send (1] frae rovny 2
: £
§
N
{a) provided senvice (b} service implementation ~
* Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

udt_send() : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv() : called when packet
arrives on rcv-side of channel

Reliable Data Transfer: Getting Started

we'll:

* Incrementally develop sender, receiver sides
of reliable data transfer protocol (rdt)

° Consider only unidirectional data transfer
- but control info will flow on both directions!

° Use finite state machines (FSM) to specify

sender, receiver , B
event causing state transition

actions taken on state transition

event
actions

state: when in this “state”
next state uniquely
determined by next

event

Rdt1.0: Reliable Transfer over a Reliable
Channel

° Underlying channel perfectly reliable

- no bit errors

- no loss of packets

° Separate FSMs for sender, receiver:

- sender sends data into underlying channel

- receiver read data from underlying channel

"4/ Wait for rdt_send(data)
call from -
above packet = make_pkt(data)

udt_send(packet)

&/ Wait for rdt_rcv(packet)
caltrom)) extract (packet,data)

deliver_data(data)

sender] 1 receiver
{Easyl| WP

[5 —“rm

What if Taking a Message over
Phone?

° Message is clear?
- Ok
° Message is garbled?
- Ask to repeat
- May not heed whole message
° In networks, called Automatic Repeat
reQuest (ARQ)
- Need error detection
- Receiver feedback
- Retransmission

W I .

-
3

Rdt2.0: FSM Specification

rdt_send(data)
sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

receiver

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) Sa
A

Wait for
call from
below

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)

udt_send(ACK)

W B DA W e

[

What if Taking a Message over
Phone?

° Message is clear?
° Message is garbled?

I -

Rdt2.0: Channel with Bit Errors (no Loss)

* Underlying channel may flip bits in packet
- Checksum to detect bit errors
The question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

- negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors
- Sender retransmits pkt on receipt of NAK
° New mechanisms in rdt2.0 (beyond rdt1.0):
- Error detection
- Receiver feedback: control msgs (ACK,NAK) rcvr->sender

'

rdt_send(data)
snkpkt = make_pkt(data, checksum)
dpk

receiver

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Wait for

call from

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

dt_send(sndpkt)

‘Wait for
call from
below

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)

udt_send(ACK)

Rdt2.0: Error Scenario
rdt_send(data)
snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt
~ 3 " i R{revp
rdt_rcv(rcvpkt) && isACK(rcvpkt)
sender
rdt_rcv(revpkt) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)

udt_send(ACK)

stop and wait

Sender sends one packet,
then waits for receiver
response

B NEOE W I .

Rdt2.0 Has a Fatal Flaw!

What happens if
ACK/NAK corrupted?

* Sender doesn't know what
happened at receiver!

° Can't just retransmit:
possible duplicate

° How fo handle duplicates?

Rdt2.1: Sender, Handles Garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(revpkt) &&
(corrupt(rcvpkt) ||
iSNAK(rcvpkt))
udt_send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) rdt_rcv(revpkt)
&8& iSACK(rcvpkt) && notcorrupt(revpkt)
— && isACK (rcvpkt)
A —_—

A

Waitfor
call 1 from
rdt_rcv(rcvpkt) && above
(corrupt(rcvpkt) ||

isSNAK(rcvpkt))
udt_send(sndpkt)

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

call from udt_send(sndpkt) corrupt(rcvpkt)
udt_send(NAK)

above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
? ’) ‘) deliver_data(data)
udt_send(ACK)

Rdt2.0 Has a Fatal Flaw!
rdt_send(data)
sndpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
~ isNAK kt)
Wait for s (rovpkt) rdt_rcv(revpkt) &&

* Sender doesn't know what garbled
happened at receiver! * Sender adds seguence
* Can't just retransmit: number to each pkt
possible duplicate - Can use 1 bit (for now)
° receiver discards (doesn't
deliver up) duplicate pkt

Rd+2.0 Has a Fatal Flaw!
. Handling duplicates:
What happens if ° Sender refransmits
ACK/NAK corrupted? current pkt if ACK/NAK
=]

Rdt2.1: Receiver, Handles Garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt, data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(revpkt) &&

not corrupt(rcvpkt) && (
as_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

it_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Rdt2.1: Discussion

Sender:
° seq # added to pkt
° two seq. #'s (0,1) will

Receiver:

° must check if received
packet is duplicate

suffice - state indicates whether
° must check if received Se:r; is expected pkt
ACK/NAK corrupted

° note: receiver can not
know if its last
ACK/NAK received OK
at sender

° twice as many states
- state must "remember”
whether “current” pkt
has 0 or 1 seq. #

Rdt2.2: Sender & Receiver Fragments
rdt_send(data)
'sndpkt = make_pki(0, data, checksum)
udt_send(sndpkt)
rdt_rev(rcvpkt) &&
T
(corrupt(revpkt) ||
iSACK(revpkt,1))
udt_send(sndpkt)
sender FSM
I fragment rdt_rev(rovpkt)
- e && notcorrupt(revpkt)
K - && iSACK(rcvpkt,0)
rdt_rev(rcvpkt) && . .
(corrupt(rcvpkt) || B ", A
has_seq1(rcvpkt, P
_seql(revpkt) ‘ atlor N\ receiver FSM
Udt_send(sndpkt) below /- fragment
~
rdt_rev(rcvpkt) && notcorrupt(revpkt)
- && has_seql(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) b W

I

A N W e

Rdt3.0: Channels with Errors andlLoss

Approach: sender waits
“reasonable” amount of
time for ACK

New assumption:
underlying channel can
also lose paCkefS (data . Retransmits if no ACK

or ACKs) received in this time

- checksum, seq. #, ACKs, + T1f pkt (or ACK) just delayed
retransmissions will be (not lost):

of help, but not enough - Retransmission will be

duplicate, but use of seq.
#'s already handles this

- Receiver must specify seq
of pkt being ACKed

Requires countdown timer

WP

Rdt2.2: a NAK-free Protocol

° Reduce type of response > ACK only

° Same functionality as rdt2.1, using ACKs only

° Instead of NAK, receiver sends ACK for last pkt
received OK

- receiver must explicitly include seq # of pkt being
ACKed

Duplicate ACK at sender results in same action as
NAK: retransmit current pkt

LN
3

Rd+3.0: Channels with Errors andLoss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

- checksum, seq. #, ACKs,
refransmissions will be
of help, but not enough

I -

How to determine if a
packet is lost?

rdt_send(data) rdt_rev(revpkt) &&
\ sndpki= make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_send(sndpkt) iSACK(rcvpkt,1))
rdt_rev(revpkt) | _start_timer A
A Wait for timeout
Caa"h?)";g’“ udt_send(sndpkt)
start_timer
rdt_rev(revpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
| && ISACK(rovpkt,1) && notcorrupt(revpkt)
stop_timer && isACK(rcvpkt,0)
stop_timer
imeout Wait for
timeout call 1 from
Gdt_send(sndpkt) C g above
start_timer (_/ rdt_rcv(rcvpkt)
rdt_rov(revpkt) && disenddaty A
(cormupt(rcvpki || Sndpkt = make_pki(L, data, checksum)
= iSACK(rcvpkt,0)) udt_send(sndpkt)
—_— start_timer
I '

Rdt3.0 in Action

. sendet receiver
receiver

e sand pidd "“-—-.___’ fov pd0
= ACW = '
0.5 / sand ACKO
v ACKD
sand p1 ok
“\\‘gu:: 155)

fev pktl
send ACK1
fimecut i okt
— ssand pid
Vi) i --‘-‘-"“-ﬁ- v Pt
send ACKD ALK sand ACK]
l\:.\r»\\C:;‘\ldJ
sand
(a1} operation with no loss sev phi
sond ACKD
(b} lost packet

Performance of Rd+3.0

° Rdt3.0 works, but performance stinks...
° ex: 16bps link, 15 ms prop. delay, 8000 bit packet:
L 8000bits

ypans = R 10 8microseconds

O U gyger Utilization — fraction of time sender busy sending

= L/—R = ﬂ = 0.00027

sender” prT.L /R 30008

« 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
* Network protocol limits use of physical resources!

-
i
i

(Picture next slide) | WP

E
E

Pipelined Protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
- Range of sequence numbers must be increased
- Need buffering at sender and/or receiver

) shogr-and B

Rdt3.0 in Action
snclor . sancir ——
sond R0 h"‘“--.__* eV pki el ‘"“-—-___‘ eV pKID
Fra send ACKD ACH send ACKD
v ACKD / 1cv ACKD
send pitl ikt send pit1
"“‘\-_.____‘ rov kil

PCK sond ACK]
floss) X4
frmaout
trmaout ot resend padl
resend pidl -‘_"‘--..______bl\.v pia
P dect dupicate) revACK]]
i o nd ACK] send pkill

i =]
send pkrd i 58N ACKD

send ACKD

() lost ACK

() premature timeout

Rd13.0: Stop-and-Wait Operation

sende receiv
first packet bit transmitted, t = 0
last packet bit transmitted, t = L/ R ;

first packet bit arrives
RTT last packet bit arrives, send ACK

ACK arrives, send next
packet, t=RTT+L/R

- L/R 008 _ 00027

U = = =
sender prT . L/R 30008

Pipelining: Increased Utilization

sender receiver
first packet bit t=0 |

last bit transmitted, t =L/ R|
ACK arrives, send next
packet, t=RTT +L/R

first packet bit arrives

last packet bit arrives, send ACK
last bit of 2 packet arrives, send ACK
last bit of 34 packet arrives, send ACK

Increase utilization
by a factor of 3!

__3*L/R__ .024

U = = = 0.0008
sender prT . L/R 30008

Two generic forms of pipelined protocols:
go-Back-N, selective repeat WE

Pipelining Protocols

Go-back-N: overview Selective Repeat: overview
° sender:up to N * sender: up to N unACKed
unACKed pkts in packets in pipeline
pipeline * receiver: ACKs individual
* receiver: only sends pkts
cumulative ACKs * sender: maintains timer
- doesn't ACK pkt if for each unACKed pkt
there's a gap - if timer expires: retransmit
* sender: has timer for only unACKed packet
oldest unACKed pkt
- if timer expires:
retransmit all unACKed
packets
WP

Go-Back-N
Sender:
* k-bit seq # in pkt header
* “window" of up fo N, consecutive unACKed pkts allowed

send base naxizegnum

already usable, not
v v ack’ed yet sent
DR CCETLTNDO0ONO0 | serioess [roroncme
, S

window sze —2
N

« ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"

O may receive duplicate ACKs (see receiver)
Timer for each in-flight pkt
Timeout(n): retransmit pkt n and all higher seq # pkts in window

GBN: Sender Extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
= make_| data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)
start_timer
nextseqnum++
}
else
refuse_data(data)

.., : timeout
y start_timer
udt_send(sndpkbase])
o Q udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqnum-1])
rdt_rov(revpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpki)+1
If (base == nextseqnum)
stop_timer

base=1
nextseqnum=1

rdt_rcv(revpkt)
_&& comupi(revpk)

else
start_timer WP

GBN: Receiver Extended FSM

default
udt_send(sndpkt)

rdt_rcv(rcvpkt)

~——a_ [GP] && noteurrupt(revpkt)
~~~~~~ && hassegnum(rcvpkt,expectedseqnum)
A—— =+
expectedseqnum=1 lextract(rcvpkt,data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum)  sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
- may generate duplicate ACKs
- need only remember expectedsegnum
° out-of-order pkt:
- discard (don't buffer) -> no receiver buffering!
- Re-ACK pkt with highest in-order seq #

sender receiver

GBN in s
action e T rovpki0

send pkt1 send ACKD
send pkit2 \_\ge%ss rg; r?glt\cm
send pktd
(wait} rev pktd, discord
/ send ACK1
rev ACKO
send pidd
ACK1 rcv pkid, discard
DS e 2 TR
rev pkid, discard
pkt2 timeout / seng AC'E'I
send pki2

send pkta %: rev pki2, deliver

send pkid send ACK
send pkts oy akfg geliver
send ACK3

WP

GBN Applet!

LTI

Fact WFeisead M WA Feeed B S

- Acton o Bander S —




Selective Repeat

received pkts

- Buffers pkts, as needed,
to upper layer

received

Receiver individually acknowledges all correctly

for eventual in-order delivery

Sender only resends pkts for which ACK not

- Sender timer for each unACKed pkt

Sender window
- N consecutive seq #'s

- Again limits seq #s of sent, unACKed pkts

Selective Repeat

~sender

data from above :

* if next available seq # in
window, send pkt

timeout(n):

° resend pkt n, restart timer

ACK(n) in [sendbase sendbase+N]:

° mark pkt n as received

* if n smallest unACKed pkt,
advance window base to
next unACKed seq #

— receiver

- send ACK(n)

+ out-of-order: buffer

+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt nin [rcvbase-N,revbase-1]
ACK(n)

otherwise:

+ ignore

pkt nin [rcvbase, revbase+N-1]

Selective
Repeat:
Dilemma

Example:
* seq#'s:0,1,2,3
* window size=3

°* receiver sees no
difference in two
scenarios!

* incorrectly passes
duplicate data as new
in (a)

=] Q: what relationship

between seq # size
I and window size?

sender window
{altor roceipt )

| recHive packel
with seq number 0

{a)

reCener window
{alber receipt)

serdor window
ater recent )

recenm packet
With 544 number 0

P

Selective Repeat: sender, receiver windows

send_base  nextsegnum already usable, not
¥ L4 ack'ed yet sent
sent, not
QN0 VAETHUTIIURONOND | s o
t whdow sze —4
N
i (o) sender view of sequence numbers
H out of order acceptabl
ptable
(buffered) but fhin wi
| dlready ack’ed Cwitin iwdccion)
JOT0DNOERETIENNERIITIOOD  opostster o=
yet received
‘—windcw«' size—3
t N
rev_base
() receiver view of sequence numbers

Selective Repeat in Action

pie0 sent

fazdlessres™— TR phil revd. delivesed. ACHD sent
kel sant AofiEaase res
9123[456789 7 iy b1t revd deliversd, MKI seat

pht2 went S eaiaasle e
01 zalesETEe T e //
ess) /.
gkl sent. windew full
T ki3 revd buffered. MKD sent

01 z3aserme -
Sonafzaasfe e

ACHD zevd. n‘-u...ny// /
ofizzalseras T —/

T pktd rewd. buffersd. ACKA sest
ACKI revd. gheS sent / vifzaagferas
frzzasls e T ;':-us.\—.m Buffared. ACHS mant

pktd TINECHT. pkid resest V4 blzissleTes
oafzaas)e s s =i
/ 78 ki rewd, g3 kil phid ke
¥ _/ / deliversd. AK2 went
acK3 seed. o seme S S S e1rad shoos]
nl_zJa;a?uu/' s /
¥ / W I

SR Applet!

OONDNN mecomer g ez sess 1
BB

1880000

Fact WFeisead M WA Feeed B S

- Acton o Bander e —




Chapter 3 outline

* 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management

° 3.1 Transport-layer
services

° 3.2 Multiplexing and
demultiplexing

° 3.3 Connectionless
transport: UDP * 3.6 Principles of

° 3.4 Principles of congestion control
reliable data transfer < 3.7 TCP congestion

control

A NS u e

TCP Segment Structure
32 bits
URG: urgent data ti
(generally not used) source port # | dest port # ;;ugyr,i
ACK: ACK # sequence number ?f data .
A not segments!)
valid ——1—acKnewledgement number
PSH: push data now read msd Receive window -
es
(generally not used)—" Qaek:um Urg data pointer n r?’willing
to accept
RST, SYN, FIN: Optign (variable length) P
connection estab
(setup, teardown
commands)
application
Internet data
checksum (variable length)
= (as in UDP)

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

® point-to-point:
- one sender, one receiver
° reliable, in-order byte

* full duplex data:

- bi-directional data flow
in same connection

steam: - MSS: maximum segment
" o size
- no "message boundaries . .
* pipelined: * connection-oriented:
PP ) - handshaking (exchange

- TCP congestion and flow
control set window size

send & receive buffers

of control msgs) init's
sender, receiver state
before data exchange
* flow controlled:
- sender will not

or ~ I~ - " door B
‘ overwhelm receiver
O G —» [} wﬂ

TCP Seq. #'s and ACKs
Seq. #'s: @ Host A Host B @

- byte stream
“number” of first User _seq

02, A
byte in segment’s types %
data < host ACKs
ACKs: _c_ receiptof
- seq # of next byte W g ekc‘l'éoes
ac
expected from host ACKs

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

A N W e

other side |
) receipt
- cumulative ACK of echoed _ s

R o 9543, Ack-,
Q: how receiver handles 'C &‘

out-of-order segments
- A: TCP spec doesn't

say > up to simple felnet scenario

implementer

time

TCP Round Trip Time and Timeout
Q: how to set TCP Q: how to estimate RTT?
timeout value?
° Longer than RTT
- but RTT varies
°* Too short? premature
timeout
- unhecessary
retransmissions
* Too long? slow reaction
to segment loss
=




Q: how to set TCP
timeout value?
° Longer than RTT
- but RTT varies
* Too short? premature
timeout

- unnecessary
retransmissions

TCP Round Trip Time and Timeout

Q: how to estimate RTT?
© SampleRTT: measured time from
segment transmission until ACK
receipt
- ignore retransmissions
© SampleRTT will vary, want
estimated RTT “smoother”
- average several recent

measurements, not just
current SampleRTT

— 3
%

° Too long? slow reaction
to segment loss

E Example Round Trip Time Estimation

it

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

- Exponential weighted moving average
« influence of past sample decreases exponentially fast
« typical value: o = 1/8™ (or 0.125)

[

TCP Round Trip Time and Timeout

Setting the timeout

© EstimtedRTT plus “safety margin”
- large variation in EstimatedRTT -> larger safety margin

First estimate of how much SampleRTT deviates from
EstimatedRTT:

I -

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:
Timeoutinterval = EstimatedRTT + 4*DevRTT

I

TCP reliable data transfer

demultiplexing

° 3.3 Connectionless
transport: UDP

* 3.4 Principles of

reliable data transfer

Chapter 3 outline
° 3.5 Connection-oriented
° 3.1 Transport-layer transport: TCP
Ser‘v‘ces_ . - segment structure
* 3.2 Multiplexing and - reliable data transfer
=]

- flow control
- connection management
° 3.6 Principles of
congestion control
® 3.7 TCP congestion
control

TCP creates rdt
service on top of IP's
unreliable service
Pipelined segments

* Cumulative ACKs
TCP uses single
retransmission timer

A BN W .

* Retransmissions are
triggered by:
- Timeout events
- Duplicate ACKs

* Initially consider

simplified TCP sender:

- Ignore duplicate ACKs

- Ignore flow control,
congestion control

11



NextSegNum
SendBase

Toop (forever) { TCP

TCP Sender Events:

} /* end of loop forever */

Data rcvd from app: Timeout: switch(event) Sender
i H t: dat ived fi licati b

* Create segment with  ° retransmit segment YT reate TGP segnent w/aeq # Nexteeanum (simplified)
seq # that caused timeout ¥ Ctiner currently not ruming) p

‘ Seq # iS by‘re-s‘rr'eam ° I"eSfClI"T ﬁmer‘ ﬁiisi?.ﬁm": ;:x:;eqNum + length(data) Comment:
number of first data ACK revd: et tinor tineout ~ SendBase-1: last
byte in segment . O ranemit not-yet-acked t with cumulatively

+ Start fimer if not If acknowledges T ieae St b T Aoy

. . previously un e start timer xample:

alr‘egdy running (Thmk segmen‘rs event: ACK received, with ACK field value of y ;_Sggdggsﬁ;i :c?/:':
of timer as for oldest - update what is known to Y et wants 73+
unACKed segment) be ACKed ¥ (thers are not-yet-acked seqrents) y > SendBase, so

° Expiration interval: - start timer if there are 3 that new data is

B rineoutinterval outstanding segments = ACKed

TCP: Retransmission Scenarios TCP Retransmission Scenarios (more)
BHostA  Host BB BHostA  Host BB B posta  Host BIR
Segs Seqe
LW I_ 2 Bty g
g
é ‘w £ s Seas100, 5, o
E= X ii § S data
l loss & loss
Seq=02, g, Sendbase %_
W =100 SendBase ‘\o\fé"m
SendBase g =120
=120 H
i
SendBase I_ - time
=10 ) premature timeout Cumulative ACK scenario
time time
lost ACK scenario WP WP
TCP ACK generation [rRFc 1122, RFC 2581] Fast Retransmit
Event at Receiver TCP Receiver action * Time-out period offen ° If sender receives 3
Arrival of in-order segment with Delayed ACK. Wait up to 500ms r'elcmvely Iong- ACKs for same dGTCI, it
expected seq #. All data up to for next segment. If no next segment, - Long delay before assumes that segment
expected seq # already ACKed send ACK resending lost packet after ACKed data was
. .
Arrival of in-order segment with Immediately send single cumulative D_eted' !OST segmen‘rs lost: .
expected seq #. One other ACK, ACKing both in-order segments via dupllca‘re ACKs - fast retransmit: resend
segment has ACK pending - Sender often sends segment before timer
) ) many segments back-to- expires
Arrival of out-of-order segment Immediately send duplicate ACK, back
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected - If segment lost, there
= [ will likely be many
Arrival of segment that Immediate send ACK, provided that duplicate ACKs for that
I partially or completely fills gap segment starts at lower end of gap I segment




Host A Host B

seatx) Y
seq # X. \ @
seq # x3|
Seg A% X ACK x1 —+
seq # x5 ACK X1 )
ACK x1 ®
ACK x1 -+
triple 3
duplicate g
ACKs W 3
=

time

I
timeout

TCP Flow Control

flow control

. . . sender won’t overflow
Receive side of TCP receiver’s buffer by

connection has a transmitting too much,
receive buffer: too fast

W .

(currently)
- unused buffer
space

application ‘ Speed'mafC/”hg
process service: matching
send rate to receiving
application’s drain rate

P
datagrams

+ App process may be
slow at reading from
buffer

-
3

Chapter 3 outline

° 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management

3.1 Transport-layer

services

° 3.2 Multiplexing and
demultiplexing

* 3.3 Connectionless
transport: UDP * 3.6 Principles of

° 3.4 Principles of congestion control

reliable data transfer < 37 Tcp congestion

control

A N W e

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of

[

Chapter 3 outline

reliable data transfer

* 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management
° 3.6 Principles of
congestion control
° 3.7 TCP congestion
control

(currently)
unused buffer
space

P a

datagrams

<«— rwnd —>
<+—— RevBuffer ——

T

(suppose TCP receiver
discards out-of-order
segments)

unused buffer space:
= rwnd

LastByteRead]

-

TCP Flow Control: How it Works

RcvBuffer-[LastByteRcvd -

lication . Receiver: advertises
process  unused buffer space by
including rwna value in
segment header
* sender: limits # of
unACKed bytes to rwnd

- guarantees receiver's
buffer doesn't overflow

Recall: TCP sender, receiver
establish "connection”
before exchanging data
segments
initialize TCP variables:

- seq.#s

- buffers, flow control
info (e.g. RevWindow)

client: connection initiator

Socket clientSocket = new
Socket(“hostname™, port#);

° server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

A BN W .

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
- specifies initial seq #
- no data
Step 2: server host receives
SYN, replies with SYNACK
segment
- server allocates buffers
- specifies server initial
seq. #
Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

13



TCP Connection Management (cont.)

Closing a connection: B client servel
client closes socket: close Ein
clientSocket.close();
Step 1 client end system close
sends TCP FIN control pot
segment to server PN
k

Step 2: server receives g

FIN, replies with ACK. z

= Closes connection, sends £
FIN. closed

I ELWH

Step 3: client receives FIN,
replies with ACK.

- Enters “timed wait" -
will respond with ACK
to received FINs

TCP Connection Management (cont.)

o comm | sboon syt
[y 7=y

i _
] [ TCP server
3 - .
i pbiatin lifecycle
[mpee gt
PR e Ty vorver wmsiaton
TCP client
lifecycle i R
R Lann
e i =
| ol
- cuosE_waT G
- s
. et
Transport Layer . ! w

Step 4: server, receives

ACK. Connection closed.

TCP Connection Management (cont.)

1B client servel®
closing \
M closing
e

IN
N‘
closed

timed wait

closed

3.1 Transport-layer
services

* 3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

° Different from flow control!

° Manifestations:
- Lost packets (buffer overflow at routers)
- Long delays (queueing in router buffers)

° A "“top-10" problem!

Principles of Congestion Control
Congestion:
° Informally: “too many sources sending too much
data too fast for network to handle”
=

* 3.4 Principles of
reliable data transfer

Chapter 3 outline

* 3.5 Connection-oriented
transport: TCP
- segment structure
- reliable data transfer
- flow control
- connection management
° 3.6 Principles of
congestion control
° 3.7 TCP congestion
control

Causes/costs of Congestion: Scenario 1

* Two senders,
two receivers
One router, —
infinite buffers 1|

HostA P

e orignal data N

unlimited shared T
outputlink buffers

* No
retransmission

delay

* Large delays
i when congested
i * Maximum
i achievable

throughput
WP

'
ci2
M

14



Causes/costs of Congestion: Scenario 2

* One router, finite buffers
° Sender retransmission of lost packet

Host 7, original A u
A e data
‘ -, original data, plus X

retransmitted data [

finite shared

| outptt link
==

TN L AR w5
0T
2

Causes/costs of congestion: Scenario 2

° Always: A = kout (goodput)
in
* “Perfect” retransmission only when loss: )’ > ),

in out, .
Retransmission of delayed (not lost) packet makes }\'in larger
(than perfect case) for same 7‘0 .
U

Causes/costs of Congestion: Scenario 3

* Four senders
* Multihop paths
* Timeout/retransmit

Q: what happens as kin
and klirglcrease ?

A;n: Original data Mou

'y original data, plus
data

finite shared output
link buffers

L P N e
|z
|m
L] 2
12y ”

o i o
a. b. c.
| s "Costs" of congestion:
More work (retrans) for given "goodput”
I +  unneeded refransmissions: link carries multiple copies of pkt.

Causes/costs of Congestion: Scenario 3

C/2

S
0
<

Approaches towards congestion control

Broadly:

End-end congestion Network-assisted
control: congestion control:
No explicit feedback from ° Routers provide feedback
network to end systems

Congestion inferred from - Single bit indicating

end-system observed loss, congestion (SNA,

delay DECbit, TCP/IP ECN,

* Approach taken by TCP ATM)

- Explicit rate sender
should send at

l‘
in
Another "cost" of congestion:

+ When packet dropped, any “upstream transmission
M. capacity used for that packet was wasted!

Chapter 3 outline

* 3.5 Connection-oriented
transport: TCP

3.1 Transport-layer

services - segment structure
3.2 MU!TIP|€.X|'\9 and - reliable data transfer
demultiplexing - flow control

* 3.3 Connectionless - connection management

transport: UDP * 3.6 Principles of
° 3.4 Principles of congestion control
reliable data fransfer 3.7 TCP congestion
control

15



L

TCP Congestion Control:

+ Goal: TCP sender should transmit as fast as possible,
but without congesting network
- Q: how to find rate justbelow congestion level?
- Decentralized: each TCP sender sets its own rate,
based on implicit feedback:
- ACK: segment received (a good thing!), network not
congested, so increase sending rate
- lost segment: assume loss due to congested
network, so decrease sending rate

!

[

TCP Congestion Control: details

sender limits rate by limiting number

of unACKed bytes “in pipeline”:
LastByteSent-LastByteAcked < cwnd
— cwnd: differs from rwnd (how, why?)
- sender limited by min(cwnd, rwnd)

roughly, byte
cwnd
RTT

rate = bytes/sec

©® cwnd is dynamic, function of RT
perceived network congestion K(s)

A N W e

TCP Slow Start

* when connection begins, cwnd =
1Mss @ Host A
- example: MSS = 500 bytes

& RTT = 200 msec
- initial rate = 20 kbps
available bandwidth may be >
MSS/RTT
- desirable to quickly ramp up
to respectable rate
increase rate exponentially
until first loss event or when
threshold reached
- double cwnd every RTT
- done by incrementing cwnd

Host 58

L
&
+

by 1 for every ACK received WP

TCP Congestion Control: Bandwidth Probing

- "Probing for bandwidth": increase transmission rate
on receipt of ACK, until eventually loss occurs, then
decrease transmission rate

- continue to increase on ACK, decrease on loss (since available
bandwidth is changing, depending on other connections in
network)

ACKs being received,
S0 increase rate

X loss, so decrease rate

£ TCP's
5 “sawtooth”
o ? behavior
« Q: how fast to increase/decrease?
- details to follow WP

TCP Congestion Control: more details

segment loss event: ACK received: increase
reducing cwnd cwnd

° tfimeout: no response - slowstart phase:
from receiver - increase exponentially
- cutcwnd tol fast (despite name) at

° 3 duplicuTe ACKs: at conne(.:'rion‘s'rur'r, or

following timeout

least some segments . id .
getting through (recall ~ * congestion avoidance:
fast retransmit) - increase linearly

- cut cwnd in half, less
aggressively than on
timeout

W -

LN
3

Transitioning into/out of slowstart

ssthresh: cwnd threshold maintained by TCP
° onloss event: set ssthresh to cwnd/2
- remember (half of) TCP rate when congestion last occurred
* when cwnd >= ssthresh: transition from slowstart to congestion
avoidance phase

duplicate ACK
dupACKcount++  new ACK

A BN W Y .

16



TCP: Congestion Avoidance

* Whencwnd > ssthresh ~ AIMD

grow cuwnd linearly « ACKs: increase cwnd

- increase cwnd by 1 by 1 MSS per RTT:
MSS per RTT additive increase
- approach possible + loss: cut cwnd in half
congestion slower (non-timeout-detected
than in slowstart loss ): multiplicative
- implementation: cwnd decrease
= cwnd + AIMD: Additive Increase
=] MSS/cwnd for each Multiplicative Decrease
I ACK received

WP

Popular “flavors” of TCP

TrT

cwnd window size (in

ose\gmientﬁ) >

T T T T T T T 17 17T T T T 1
8 9 10 1112 13 14 15

Transmission

round
|! ELWP

=
.
w
IS
n
o
~

TCP throughput

° Q:what's average throughout of TCP as
function of window size, RTT?

- ignoring slow start
* Let W be window size when loss occurs.
- when window is W, throughput is W/RTT

- just after loss, window drops to W/2,
throughput to W/2RTT.

- average throughout: .75 W/RTT

A N W e

[

TCP Congestion Control FSM: overview

7 loss: .
- Ioss(/ @timeout
\L—/‘timeout
%) loss: loss:
~time newAC 3dupACK
loss:
3dupACK

I -

I

Summary: TCP Congestion Control

when cwnd < ssthresh, sender in slow-start
phase, window grows exponentially.

when cwnd >= ssthresh, sender is in congestion-
avoidance phase, window grows linearly.

when triple duplicate ACK occurs, ssthresh set
to cwnd/2, cwnd set to ~ ssthresh

when timeout occurs, ssthresh set to cwnd/2,
cwnd set to 1 MSS.

A BN W .

TCP Futures: TCP over “long, fat pipes”

Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

Requires window size W = 83,333 in-flight
segments!

throughput in terms of loss rate:
1.22-MSS
RTTY/L

© = L=2101° Wow
°* New versions of TCP for high-speed

17



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

rer M

connection 2

.
3

Fairness (more)

Fairness and Parallel TCP
Connections
° Nothing prevents app
- do not want rate from opening parallel
throttled by congestion connections between 2
control hosts.
° Instead use UDP: ° Web browsers do this
" pimpauiofideact |+ Example: ik of rate R
packet loss supporting 9 connections;
- hew app asks for 1 TCP, gets
rate R/10
- hew app asks for 11 TCPs,
getsR/2!

Fairness and UDP

° Multimedia apps often
do not use TCP

W .

WP

[

Why is TCP fair?

Two competing sessions:
° Additive increase gives slope of 1, as throughout increases
° multiplicative decrease decreases throughput proportionally

R equal bandwidth share

5

£

= loss: decrease window by factorof 2

2 congestion avoidance: additive increase
f loss: decrease window by factor of 2

E congestion avoidance: additive increase
g

£

g

[§]

Connection 1 throughput R

I -

Chapter 3: Summary

* Principles behind transport
layer services:
- multiplexing,
demultiplexing
- reliable data ftransfer
- flow control Next:
- congestion control
° Instantiation and
implementation in the

* leaving the network
“edge"” (application,
transport layers)

Internet ® into the network
_ UDP “core
- Tep

18



