
1

Application Layer

CS 3516 – Computer NetworksCS 3516 Computer Networks

2: Application Layer 2

Chapter 2: Application Layer
Goals:
• conceptual, 

implementation 
aspects of network 
application protocols

• learn about protocols 
by examining popular 
application-level 
protocols
– HTTP

FTP

3

– transport-layer 
service models

– client-server 
paradigm

– peer-to-peer 
paradigm

– FTP
– SMTP / POP3 / IMAP
– DNS

• programming network 
applications
– socket API

Some network apps

• e-mail
• web
• instant messaging
• remote login

• social networks
• voice over IP
• real-time video 

conferencing

4

remote login
• P2P file sharing
• multi-user network 

games
• streaming stored video 

clips

f g
• grid computing

Creating a Network App

Write programs that
– run on (different) end 

systems
– communicate over network
– e.g., web server software 

communicates with browser 

application
transport
network
data link
physical

5

commun cates w th browser 
software

No need to write software 
for network-core devices
– Network-core devices do 

not run user applications 
– applications on end systems  

allows for rapid app 
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2.8 Socket programming 

6

• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

p g g
with TCP



2

Application architectures

• Client-server (CS)
– Including data centers / cloud computing

• Peer-to-peer (P2P)
• Hybrid of client-server and P2P

Client-server Architecture
server:

– always-on host
– permanent IP address
– server farms for scaling

clients:

8

– communicate with server
– may be intermittently 

connected
– may have dynamic IP 

addresses
– do not communicate 

directly with each other

client/server

Server Example - Google Data 
Centers

• Estimated cost of data center: $600M
• Google spent $2.4B in 2007 on new data 

centers
• Each data center uses 50-100 megawatts g

of power

Pure P2P Architecture

• no always-on server
• arbitrary end systems 

directly communicate
• peers are intermittently 

connected and change IP 

peer-peer

connected and change IP 
addresses

Highly scalable but 
difficult to manage

Hybrid of Client-server and P2P
• E.g. Skype

– voice-over-IP P2P application
– centralized server: finding address of 

remote party
– client-client connection: often direct (not 

through server) through server) 
• E.g. Instant messaging

– chatting between two users is P2P
– centralized service: client presence 

detection/location
• user registers its IP address with central 

server when it comes online
• user contacts central server to find IP 

addresses of buddies

Processes Communicating
Process: program running 

within a host.
• Within same host, two 

processes communicate 
using  inter-process 

Client process: process 
that initiates 
communication

Server process: process 
that waits to be g p

communication (defined 
by OS).

• Processes in different 
hosts communicate by 
exchanging messages

contacted

• Note: applications with 
P2P architectures have 
client processes & 
server processes



3

Sockets

• Process sends/receives 
messages to/from its 
socket

• Socket analogous to door
– sending process shoves 

process

socket

host or
server

process

socket

host or
server

controlled by
app developer

g p
message out door

– sending process relies on 
transport infrastructure 
on other side of door which 
brings message to socket 
at receiving process

TCP with
buffers,
variables

TCP with
buffers,
variables

Internet

controlled
by OS

• API: (1) choice of transport protocol; (2) ability to 
fix a few parameters (see Sockets slide deck)

Addressing Processes

• To receive messages, 
process  must have 
identifier

• Host device has unique 
32-bit IP address

• Exercise: use ipconfig

• Q: does  IP address of 
host on which process 
runs suffice for 
identifying the process?
– A: No, many processes 

can be running on 
sameExercise: use ipconfig

from command prompt to 
get your IP address 
(Windows)

same
• Identifier includes both 

IP address and port 
numbers associated with 
process on host.

• Example port numbers:
– HTTP server: 80
– Mail server: 25

App-layer Protocol Defines
• Types of messages 

exchanged, 
– e.g., request, response 

• Message syntax:
– what fields in messages & 

Public-domain protocols:
• Defined in RFCs
• allows for 

interoperability
•  HTTP  SMTP  what fields in messages & 

how fields are delineated
• Message semantics 

– meaning of information in 
fields

• Rules for when and how 
processes send & 
respond to messages

• e.g., HTTP, SMTP, 
BitTorrent

Proprietary protocols:
• e.g., Skype, ppstream

What Transport Service Does an App 
Need?

Data loss
• some apps (e.g., audio) can 

tolerate some loss
• other apps (e.g., file 

transfer, telnet) require 
100% reliable data 
t f

Throughput
• some apps (e.g., 

multimedia) require 
minimum amount of 
throughput to be 
“effective”
th   (“ l ti  ”) transfer

Timing
• some apps (e.g., 

Internet telephony, 
interactive games) 
require low delay to be 
“effective”

• other apps (“elastic apps”) 
make use of whatever 
throughput they get 

Security
• encryption, data integrity, 

…

Transport Service Requirements of Common 
Apps

Application

file transfer
e-mail

Web documents
real time audio/video

Data loss

no loss
no loss
no loss
l t l t

Throughput

elastic
elastic
elastic

di 5kb 1Mb

Time Sensitive

no
no
no
yes 100’s msecreal-time audio/video

stored audio/video
interactive games
instant messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above 
few kbps up
elastic

yes, 100 s msec

yes, few secs
yes, 100’s msec
yes and no

Internet Transport Protocols Services

TCP service:
• connection-oriented: setup 

required between client and 
server processes

• reliable transport between 
di  d i i  

UDP service:
• unreliable data transfer 

between sending and 
receiving process

• does not provide: 
connection setup  sending and receiving process

• flow control: sender won’t 
overwhelm receiver 

• congestion control: throttle 
sender when network 
overloaded

• does not provide: timing, 
minimum throughput 
guarantees, security

connection setup, 
reliability, flow control, 
congestion control, timing, 
throughput guarantee, or 
security 

Q: why bother?  Why is 
there a UDP?



4

Internet Apps:  Application, Transport Protocols

Application

e-mail
remote terminal access

Web 
fil t f

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]

Underlying
transport protocol

TCP
TCP
TCP
TCPfile transfer

streaming multimedia

Internet telephony

FTP [RFC 959]
HTTP (eg Youtube), 
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

TCP
TCP or UDP

typically UDP

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2 8 Socket programming 

• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

2.8 Socket programming 
with TCP

Web and HTTP
First some jargon
• Web page consists of objects
• Object can be HTML file, JPEG image, Java 

applet, audio file,…
• W b  i t  f b  HTML fil hi h • Web page consists of base HTML-file which 

includes several referenced objects
• Each object is addressable by a URL
• Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

HTTP Overview

HTTP: hypertext 
transfer protocol

• Web’s application layer 
protocol

• li t/  d l

PC running
Explorer

• client/server model
– client: browser that 

requests, receives, 
“displays” Web objects

– server: Web server 
sends objects in 
response to requests

Server 
running

Apache Web
server

Mac running
Navigator

HTTP Overview (continued)
Uses TCP:
• client initiates TCP 

connection (creates socket) 
to server,  port 80

• server accepts TCP 
ti  f  li t

HTTP is “stateless”
• server maintains no 

information about 
past client requests

asideconnection from client
• HTTP messages (application-

layer protocol messages) 
exchanged between browser 
(HTTP client) and Web 
server (HTTP server)

• TCP connection closed

Protocols that maintain 
“state” are complex!

• past history (state) must 
be maintained

• if server/client crashes, 
their views of “state” may 
be inconsistent, must be 
reconciled

aside

HTTP connections

Nonpersistent HTTP
• At most one object is 

sent over a TCP 
connection.

Persistent HTTP
• Multiple objects can 

be sent over single 
TCP connection 
between client and 
server.



5

Nonpersistent HTTP
Suppose user enters URL 

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at 
www.someSchool.edu on port 80

1b. HTTP server at host 
www.someSchool.edu waiting 
for TCP connection at port 80.  

(contains text, 
references to 10 

jpeg images)

2. HTTP client sends HTTP 
request message (containing 
URL) into TCP connection 
socket. Message indicates that 
client wants object 
someDepartment/home.index

“accepts” connection, notifying 
client

3. HTTP server receives request 
message, forms response 
message containing requested 
object, and sends message 
into its socket

time

Nonpersistent HTTP (cont.)

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html 
file, finds 10 referenced jpeg  
objects

4. HTTP server closes TCP 
connection. 

objects

6. Steps 1-5 repeated for each 
of 10 jpeg objectstime

Nonpersistent HTTP: Response time

Definition of RTT: time for 
a small packet to travel 
from client to server 
and back.

Response time:
• one RTT to initiate TCP 

initiate TCP
connection

RTT

t• one RTT to initiate TCP 
connection

• one RTT for HTTP 
request and first few 
bytes of HTTP response 
to return

• file transmission time
total = 2RTT+transmit time

time to 
transmit 
file

request
file

RTT

file
received

time time

Persistent HTTP

Nonpersistent HTTP issues:
• requires 2 RTTs per object
• OS overhead for each TCP 

connection
• browsers often open parallel 

TCP connections to fetch 

Persistent  HTTP
• server leaves connection 

open after sending 
response

• subsequent HTTP messages  
between same TCP connections to fetch 

referenced objects client/server sent over 
open connection

• client sends requests as 
soon as it encounters a 
referenced object

• as little as one RTT for all 
the referenced objects

HTTP request message

• two types of HTTP messages: request, response
• HTTP request message:

– ASCII (human-readable format)
request line

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu 
User-agent: Mozilla/4.0
Connection: close 
Accept-language:fr

(extra carriage return, line feed)

q
(GET, POST, 

HEAD commands)

header
lines

Carriage return, 
line feed 

indicates end 
of message

HTTP request message: general format



6

Uploading form input

Post method:
• Web page often 

includes form input
• Input is uploaded to 

URL method:
• Uses GET method
• Input is uploaded in 

URL field of request p p
server in entity body

URL field of request 
line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0
• GET
• POST
• HEAD

HTTP/1.1
• GET, POST, HEAD
• PUT

– uploads file in entity HEAD
– asks server to leave 

requested object out of 
response

up a  f  n nt ty 
body to path specified 
in URL field

• DELETE
– deletes file specified in 

the URL field

HTTP response message

HTTP/1.1 200 OK 
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT 
Server: Apache/1.3.0 (Unix) 
Last-Modified: Mon 22 Jun 1998

status line
(protocol

status code
status phrase)

header
Last Modified: Mon, 22 Jun 1998 …... 
Content-Length: 6821 
Content-Type: text/html

data data data data data ... 

lines

data, e.g., 
requested

HTML file

HTTP response status codes

200 OK
– request succeeded, requested object later in this message

301 Moved Permanently

In first line in server->client response message.
A few sample codes:

301 Moved Permanently
– requested object moved, new location specified later in 

this message (Location:)
400 Bad Request

– request message not understood by server
404 Not Found

– requested document not found on this server
505 HTTP Version Not Supported

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent 
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete) 
GET request to HTTP server

3. Look at response message sent by HTTP server!

User-server State: Cookies

Many major Web sites 
use cookies

Four components:
1) cookie header line of 

HTTP response message

Example:
• Susan always access 

Internet always from PC
• visits specific e-

commerce site for first HTTP response message
2) cookie header line in 

HTTP request message
3) cookie file kept on 

user’s host, managed by 
user’s browser

4) back-end database at 
Web site

time
• when initial HTTP 

requests arrives at site, 
site creates: 
– unique ID
– entry in backend 

database for ID



7

Cookies: keeping “state” (cont.)
client server

cookie file

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response 
Set-cookie: 1678 

ebay 8734
1678

usual http response msg

usual http response msg

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

Cookies (continued)
What cookies can bring:
• authorization
• shopping carts
• recommendations
• user session state 

Cookies and privacy:
 cookies permit sites to 

learn a lot about you
 you may supply name 

and e-mail to sites

aside

• user session state 
(Web e-mail)

How to keep “state”:
• protocol endpoints: maintain state 

at sender/receiver over multiple 
transactions

• cookies: http messages carry 
state

Web caches (proxy server)

• user sets browser: 
Web accesses via  
cache

• browser sends all 

Goal: satisfy client request without involving origin server

Proxy
server

origin 
server

browser sends all 
HTTP requests to 
cache
– object in cache: cache 

returns object 
– else cache requests 

object from origin 
server, then returns 
object to client

client

client
origin 
server

More About Web Caching

• Cache acts as both 
client and server

• Typically cache is 
installed by ISP 

Why Web caching?
• Reduce response time 

for client request
• Reduce traffic on an 

(university, company, 
residential ISP)

ff
institution’s access 
link.

• Internet dense with 
caches: enables “poor” 
content providers to 
effectively deliver 
content (but so does 
P2P file sharing)

Caching Example 

Assumptions
• average object size = 

1,000,000 bits
• avg. request rate from 

institution’s browsers to origin 
servers = 15/sec

origin
servers

public
Internet

1 b• delay from institutional router 
to any origin server and back 
to router = 2 sec

Consequences
• utilization on LAN = 15%
• utilization on access link = 100%
• total delay = Internet delay + 

access delay + LAN delay
=  2 sec + minutes (congested)  + 

milliseconds

institutional
network 100 Mbps LAN

15 Mbps 
access link

institutional
cache

Caching Example (cont)

possible solution
• increase bandwidth of access 

link to, say, 100 Mbps
consequence
• utilization on LAN = 15%
• utilization on access link = 15%

origin
servers

public
Internet

100 butilization on access link = 15%
• Total delay = Internet delay + 

access delay + LAN delay
=  2 sec + msecs + msecs

• BUT…often a costly upgrade

institutional
network 100 Mbps LAN

100 Mbps 
access link

institutional
cache



8

Caching example (cont)
possible solution: install 

cache
• suppose hit rate is 0.4
consequence
• 40% requests will be 

satisfied almost immediately

origin
servers

public
Internet

1 b
y

• 60% requests satisfied by 
origin server

• utilization of access link 
reduced to 60%, resulting in 
negligible  delays (say 10 
msec)

• total avg delay = Internet 
delay + access delay + LAN 
delay   =  .6*(2.01) secs + 
.4*milliseconds < 1.4 secs

institutional
network 100 Mbps LAN

15 Mbps 
access link

institutional
cache

Caching - Conditional GET

• Goal: don’t send object 
if cache has up-to-date 
cached version

• cache: specify date of 
cached copy in HTTP 
request

cache server

HTTP request msg
If-modified-since: 

<date>

HTTP response

object 
not 

modified
request
If-modified-since: 

<date>

• server: response 
contains no object if 
cached copy is up-to-
date: 
HTTP/1.0 304 Not 

Modified

HTTP/1.0 
304 Not Modified

HTTP request msg
If-modified-since: 

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object 
modified

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2.8 Socket programming 

with TCP• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

with TCP

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2.8 Socket programming 

with TCP• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

with TCP

DNS: Domain Name System

People: many identifiers:
– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) -

Domain Name System:
• distributed database

implemented in hierarchy of 
many name servers

• application-layer protocol
h t  t    t  used for addressing 

datagrams
– “name”, e.g., 
www.yahoo.com - used 
by humans

Q: map between IP 
addresses and name?

host, routers, name servers to 
communicate to resolve names 
(address/name translation)
– note: core Internet 

function, implemented as 
application-layer protocol

– complexity at network’s 
“edge”

DNS 
Why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized 

database

DNS services
• hostname to IP 

address translation
• host aliasing

– Aliases, where canonical database
• maintenance

 doesn’t scale!

,
name is “real” name

• mail server aliasing
• load distribution

– replicated Web 
servers: set of IP 
addresses for one name



9

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
• client queries a root server to find .com DNS server
• client queries .com DNS server to get amazon.com

DNS server
• client queries amazon.com DNS server to get IP 

address for www.amazon.com

DNS: Root Name Servers
• Contacted by local name server that can not resolve name
• Root name server:

– Contacts authoritative name server if name mapping not known
– Gets mapping
– Returns mapping to local name server

a Verisign Dulles VA

13 root name 
servers worldwide

b USC-ISI Marina del Rey, CA
l  ICANN Los Angeles, CA

e NASA Mt View, CA
f  Internet Software C. Palo Alto, 
CA (and 36 other locations)

i Autonomica, Stockholm (plus     
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul, 
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j  Verisign, ( 21 locations)

TLD and Authoritative Servers
• Top-level domain (TLD) servers:

– Responsible for com, org, net, edu, etc, and 
all top-level country domains uk, fr, ca, jp

– Network Solutions maintains servers for com 
TLDTLD

– Educause for edu TLD
• Authoritative DNS servers:

– Organization’s DNS servers, providing 
authoritative hostname to IP mappings for 
organization’s servers (e.g., Web, mail).

– Can be maintained by organization or service 
provider

Local Name Server

• Does not strictly belong to hierarchy
• Each ISP (residential ISP, company, 

university) has one
– Also called “default name server”Also called default name server
– You can run one in your home/dorm!

• When host makes DNS query, query is sent 
to its local DNS server
– Acts as proxy, forwards query into 

hierarchy

root DNS server

local DNS server

2
3

4

5

TLD DNS server

DNS name 
resolution example

• Host at cis.poly.edu
wants IP address for 
gaia.cs.umass.edu

Iterated query:

requesting host
cis.poly.edu

dns.poly.edu

1
6

authoritative DNS server
dns.cs.umass.edu

7
8

Iterated query
• contacted server 

replies with name of 
server to contact

• “I don’t know this 
name, but ask this 
server”

root DNS server

2

67
TLD DNS server

3Recursive query:
• Puts burden of name 

resolution on 
contacted name 
server

• Heavy load?

DNS name 
resolution example

requesting host
cis.poly.edu

gaia.cs.umass.edu

local DNS server
dns.poly.edu

1

45

authoritative DNS server
dns.cs.umass.edu

8

• Heavy load?



10

DNS: caching and updating records
• Once (any) name server learns mapping, it caches

mapping
– Cache entries timeout (disappear) after some 

time
– TLD servers typically cached in local name yp y

servers
• Thus root name servers not visited often

• Originally thought DNS names quite static, but 
increasingly not so  update/notify mechanisms 
under design by IETF
– RFC 2136: http://www.ietf.org/rfc/rfc2136.txt

DNS Records
DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

• Type=A
 name is hostname

i dd

• Type=CNAME
 name is alias name for some 

• Type=NS
 name is domain (e.g. 

foo.com)
 value is hostname of 

authoritative name 
server for this domain

 value is IP address “canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

• Type=MX
 value is name of mailserver

associated with name

DNS protocol, messages
DNS protocol : query and reply messages, both with 

same message format

msg header
 identification: 16 bit # 

for query, reply to query 
  #uses same #

 flags:
 query or reply
 recursion desired 
 recursion available
 reply is authoritative

DNS protocol, messages

Name, type fields
for a query

Resource records in 
response to queryp q y

Records for
authoritative servers

Additional “helpful”
info that may be used

Inserting records into DNS
• Example: new startup “Network Utopia”

– How do people get IP address of your Web site?
– How do they send you email?

• Register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
– provide names  IP addresses of authoritative name server – provide names, IP addresses of authoritative name server 

(primary and secondary)
– registrar inserts two RRs into .com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

• Create authoritative server Type A record for 
www.networkuptopia.com; Type MX record for 
networkutopia.com for mail

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2.8 Socket programming 

with TCP• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

with TCP



11

Pure P2P Architecture

• no always-on server
• Arbitrary end systems 

directly communicate
• Peers are intermittently 

connected and change IP 

peer-peer

connected and change IP 
addresses

• Three topics:
– File distribution
– Searching for information
– Case Study: Skype

File Distribution: Client-Server vs P2P
Question : How much time to distribute file 

from one server to N  peers?

Server

us: server upload 
bandwidth

ui: peer i upload 

us

u2d1 d2
u1

uN

dN
Network (with 
abundant bandwidth)

File, size F

bandwidth

di: peer i download 
bandwidth

File Distribution Time: Client-Server

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F• Server sequentially 
sends N copies:
– NF/us time 

• Client i takes F/di uNi
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to  distribute F
to N clients using 

client-server approach 

File Distribution Time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F
• Server must send one 

copy: F/us time 
• Client i takes F/di time 

to download
• NF bits must be uNNF bits must be 

downloaded (aggregate)
• Fastest possible upload rate: us + sum ui

dP2P = max { F/us, F/min(di), NF/(us + ui) }
i

2.5

3

3.5

tio
n 

T
im

e P2P

Client-Server

Client-Serer vs P2P: Example
Client upload rate = u,  F/u = 1 hour,  us = 10u,  dmin ≥ us

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tr
ib

ut

File Distribution: BitTorrent

tracker: tracks peers 
participating in torrent

torrent: group of 
peers exchanging  
chunks of a file

obtain list
of peers

trading 
chunks

peer



12

BitTorrent (1)

• File divided into 256KB chunks
• Peer joining torrent: 

– Has no chunks, but will accumulate them over time
R i t  ith t k  t  t li t f  t  – Registers with tracker to get list of peers, connects 
to subset of peers (“neighbors”)

• While downloading, peer uploads chunks to other peers 
• Peers may come and go
• Once peer has entire file, it may (selfishly) leave or 

(altruistically) remain

BitTorrent (2)
Pulling Chunks
• At any given time, 

different peers have 
different subsets of 
file chunks

Sending Chunks: tit-for-tat
• Alice sends chunks to four 

neighbors currently 
sending her chunks at the 
highest rate
- Re-evaluate top 4 every • Periodically, a peer 

(Alice) asks each 
neighbor for list of 
chunks that they have

• Alice sends requests 
for her missing chunks
– rarest first

Re evaluate top 4 every 
10 secs

• Every 30 secs: randomly 
select another peer, 
starts sending chunks
- Newly chosen peer may 

join top 4 (5 total)
- “optimistically unchoke”

BitTorrent:  Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

With higher upload rate, 
can find better trading 
partners & get file faster!

Distributed Hash Table (DHT)

• DHT = distributed P2P database
• Database has (key, value) pairs; 

– key: ss number; value: human name
k    l   dd– key: content type; value: IP address

• Peers query DB with key
– DB returns values that match the key

• Peers can also insert (key, value) peers

DHT Identifiers
• Assign integer identifier to each peer in range 

[0,2n-1]
– Each identifier can be represented by n bits

• Require each key to be an integer in same rangeq y g g
• To get integer keys, hash original key

– e.g., key = h(“Led Zeppelin IV”)
– This is why they call it a distributed “hash” table

How to Assign Keys to Peers?

• Central issue:
– Assigning (key, value) pairs to peers

• Rule: assign key to the peer that has the 
l s st IDclosest ID

• Convention in lecture: closest is the 
immediate successor of the key

• Ex: n=4; peers: 1,3,4,5,8,10,12,14; 
– key = 13, then successor  peer = 14
– key = 15, then successor peer = 1



13

1

3

4

15

Circular DHT (1)

5

8
10

12

• Each peer only aware of immediate 
successor and predecessor.

• “Overlay network”

Circle DHT  (2)

0001

0011

1111

Who’s resp 

for key 1110 ?
I am

O(N) messages
on avg to resolve
query, when there
are N peers

0100

0101

1000
1010

1100

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Circular DHT with Shortcuts
1

3

4

12

15

Who’s resp 
for key 1110? 

• Each peer keeps track of IP addresses of 
predecessor, successor, short cuts.

• Reduced from 6 to 2 messages.
• Possible to design shortcuts so O(log N) neighbors, 

O(log N) messages in query

5

8
10

12

Peer Churn
1

3

4

5
12

15

•To handle peer churn, require 
each peer to know IP address 
of its two successors. 
• Each peer periodically pings its 
two successors to see if still alive

• Peer 5 abruptly leaves
• Peer 4 detects; makes 8 its immediate successor; 

asks 8 who its immediate successor is; makes 8’s 
immediate successor its second successor.

• What if peer 13 wants to join?

5

8
10

P2P Case study: Skype

• Inherently P2P: pairs 
of users communicate

• Proprietary 
application-layer 
protocol (inferred via 

Skype clients (SC)

Supernode 
(SN)

Skype 
login server

protocol (inferred via 
reverse engineering) 

• Hierarchical overlay 
with Super Nodes 
(SNs)

• Index maps usernames 
to IP addresses; 
distributed over SNs

Peers as Relays
• Problem when both 

Alice and Bob are 
behind  “NATs”. 
– NAT prevents outside 

peer from initiating call 
to insider peerto insider peer

• Solution:
– Using Alice’s and Bob’s 

SNs, Relay is chosen
– Each peer initiates 

session with relay
– Peers can now 

communicate through 
NATs via relay



14

Chapter 2: Application layer

• 2.1 Principles of 
network applications

• 2.2 Web and HTTP
• 2.3 FTP 

• 2.6 P2P applications
• 2.7 Socket programming 

with UDP
• 2.8 Socket programming 

with TCP• 2.4 Electronic Mail
– SMTP, POP3, IMAP

• 2.5 DNS

with TCP

• (See Sockets slide deck)

Chapter 2: Summary

• Application architectures
– client-server
– P2P
– hybrid

• Application service 

Study of network apps now complete!
• specific protocols:

- HTTP
- DNS
- P2P: BitTorrent, Skype

• socket programming
Application service 
requirements:
– reliability, bandwidth, 

delay
• Internet transport 

service model
– connection-oriented, 

reliable: TCP
– unreliable, datagrams: UDP

Chapter 2: Summary

• Typical request/reply 
message exchange:
– client requests info or 

service

Learned about protocols

Important themes: 
- control vs data msgs

- in-band, out-of-band
t li d service

– server responds with 
data, status code

• Message formats:
– headers: fields giving 

info about data
– data: info being 

communicated

- centralized vs
decentralized 

- stateless vs stateful
- reliable vs unreliable 

msg transfer 
- “complexity at network 

edge”


